Skip to main content

Prospective Developments in Laboratory Animals

  • Chapter
Book cover Animal Patents
  • 17 Accesses

Abstract

The debate over the patenting of mammalian species was recently spearheaded by the ability to alter the genetic constituents of individual animals through the revolutionary technology of direct transfer of genes into the mammalian embryos immediately following fertilization. Genetic engineering of animals has resulted in phenotypic changes in these “transgenic” animals which can be used as prototypes for the improvement of agricultural livestock species, models for various human and animal diseases, and/or used as the ultimate in in vivo testing for the regulation of specific genetic elements through normal regulatory signals or environmental substances that act as mutagens or toxins. The opportunities that are envisioned have stimulated the commercial enterprises to identify a market for these valued animal systems. Securing proprietary rights for the protection of their investments may necessitate the patenting of these animals. This paper will describe how transgenic animals are produced and, through specific examples, outline some of the important areas in biology that are using transgenic laboratory animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ebert, K. M., M. J. Low, E. W. Overstrom, F. C. Buonomo, C. A. Baile, T. M. Roberts, A. Lee, G. Mandel, and R. H. Goodman (1988) A Moloney MLV-Rat Somatotropin Fusion Gene Produces Biologically Active Somatotropin in a Transgenic Pig. Mol. Endocrinol., 2: 277.

    Article  Google Scholar 

  • Epstein, C. J., K. B. Avraham, M. Lovett, S. Smith, O. Elroy-Stein, G. Rotman, C. Bry, and Y. Groner (1987) Transgenic Mice with Increased Cu/Zn-Superoxide Dismutase Activity: Animal Model of Dosage Effects in Down Syndrome. Proc. Natl Acad. Sci., 84: 8044.

    Article  Google Scholar 

  • Galloway, S. (1985) Development of a Standard Protocol for in vitro Cytogenetic Testing with Chinese Hamster Ovary Cells: Comparisons of Results for 22 Compounds in Two Laboratories. Environ. Mutagen, 7: 1.

    Article  Google Scholar 

  • Hammer, R. E., R. D. Palmiter, and R. L. Brinster (1984) Partial Correction of Murine Hereditary Growth Disorder by Germ-Line Incorporation of a New Gene. Nature, 311: 65.

    Article  Google Scholar 

  • Low, M. J., R. H. Goodman, and K. M. Ebert (1989) Cryptic Sequences in the Human Growth Hormone Gene Direct Gonadotroph-Specific Expression, (submitted.)

    Google Scholar 

  • Low, M. J., R. M. Lechan, R. E. Hammer, R. L. Brinster, J. F. Habener, G. Mandel, and R. H. Goodman (1986) Gonadotroph-Specific Expression of Metallothionein Fusion Genes in Pituitaries of Transgenic Mice. Science, 231: 1002 et seq.

    Article  Google Scholar 

  • Mason, A. J., J. S. Hayflick, R. T. Zoeller, W. S. Young III, H. S. Phillips, K. Nikolics, and P. H. Seeburg (1986a) A Deletion Truncating the Gonadotropin-Releasing Hormone Gene is Responsible for Hypogonadism in the Mouse. Science, 234: 1366.

    Article  Google Scholar 

  • Mason, A. J., S. L. Pitts, K. Nikolics, E. Szonyi, J. N. Wilcox, P. H. Seeburg, and T. A. Stewart (1986b) The Hypogonadal Mouse: Reproductive Functions Restored by Gene Therapy. Science, 234: 1372.

    Article  Google Scholar 

  • Myer, B., L. Bowers, and W. Caspary (1985) Report of the International Program on Chemical Safety’s Collaborative Study on in vitro Assays in Evaluation of Short-Term Tests for Carcinogens. Progess and Mutation Research Series, vol. 5, ed. J. Ashby et al. Amsterdam: Elsevier, p. 555.

    Google Scholar 

  • Palmiter, R. D., R. L. Brinster, R. E. Hammer, M. E. Trumbauer, M. G. Rosenfeld, N. C. Birnberg, and R. M. Evans (1982) Dramatic Growth of Mice that Develop from Eggs Microinjected with Metallothionein-Growth Hormone Fusion Genes. Nature, 300: 611.

    Article  Google Scholar 

  • Pittius, C. W., L. Henninghauser, E. Lee, H. Westphal, E. Nicois, J. Vitale, and K. Gordon (1988) A Milk Protein Gene Promoter Directs the Expression of Human Tissue Plasminogen Activator cDNA to the Mammary Gland in Transgenic Mice. Proc. Natl Acad. Sci., 85: 5874.

    Article  Google Scholar 

  • Simons, J. P., I. Wilmut, A. J. Clark, A. L. Archibald, J. O. Bishop, and R. Lathe (1988) Gene Transfer into Sheep. Biotechnology, 6: 179.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1989 Palgrave Macmillan, a division of Macmillan Publishers Limited

About this chapter

Cite this chapter

Ebert, K.M. (1989). Prospective Developments in Laboratory Animals. In: Lesser, W.H. (eds) Animal Patents. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-10769-8_8

Download citation

Publish with us

Policies and ethics