Skip to main content

Abstract

When sufficient pressure is applied to the skin, the underlying blood vessels are occluded or partially occluded and oxygen and other nutrients are no longer delivered at a rate sufficient to satisfy the metabolic requirements of the tissues. To survive, the cells must draw upon their stores of energy. Without a circulation, the breakdown products of metabolism accumulate within the interstitial spaces and within the cells. As energy stores run out, the cellular processes begin to fail. Ionic gradients across cellular membranes begin to dissipate and the redistribution of fluid which may occur between the cells and extracellular spaces has consequences which in some situations render recovery impossible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bader, D. L. (1989). Effects of compressive loading regimens on tissue viability, this volume, pp. 191–201

    Google Scholar 

  • Bagge, U., Amundson, B. and Lauritzen, C. (1980). White cell deformability and plugging of skeletal muscle capillaries in haemorrhagic shock. Ada Physiologica Scandinavica, 180, 159–163

    Article  Google Scholar 

  • Bayliss, W. M. (1902). On the local reactions of the arterial wall to changes of internal pressure. Journal of Physiology, 28, 220–231

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Berne, R. M. (1980). The role of adenosine in the regulation of coronary blood flow. Circulation Research, 47, 807–813

    Article  PubMed  CAS  Google Scholar 

  • Bier, A. (1897). Die Enstehung des Collateralkreislauf. I, Die arterielle Collateral-kreislauf. Archiv fíhologische Anatomie und Physiologie, 147, 257–293

    Google Scholar 

  • Blair, D. A., Glover, W. E. and Roddie, I. A. C. (1959). The abolition of reactive and post-exercise hyperaemia in the forearm by temporary restriction of arterial inflow. Journal of Physiology, 148, 648–658

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Catchpole, B. N. and Jepson, R. P. (1955). Hand and finger blood flow. Clinical Science, 14, 109–120

    PubMed  CAS  Google Scholar 

  • Dornhorst, A. C. and Whelan, R. F. (1953). The blood flow in the muscle following exercise and circulatory arrest: the influence of reduction in effective local blood pressure, of arterial hypoxia and adrenaline. Clinical Science, 12, 33–40

    PubMed  CAS  Google Scholar 

  • Eichna, L. W. and Wilkins, R. W. (1941). Blood flow to the forearm and calf. II, Reactive hyperaemia: factors influencing the blood flow during the vasodilatation following ischaemia. Bulletin of Johns Hopkins Hospital, 68, 450–476

    Google Scholar 

  • Emmelin, K. and Emmelin, N. (1947). Histamine and reactive hyperaemia. Acta Physiologica Scandanavica, 14, 16–18

    Article  CAS  Google Scholar 

  • Fairchild, H. M., Ross, J. and Guyton, A. C. (1966). Failure of recovery from reactive hyperaemia in the absence of oxygen. American Journal of Physiology, 210, 490–492

    PubMed  CAS  Google Scholar 

  • Folkow, B. (1949). Intravascular pressure as a factor regulating the tone of the small vessels. Ada Physiologica Scandinavica, 17, 289–310

    Article  CAS  Google Scholar 

  • Freeman, N. E. (1935). The effect of temperature on the rate of blood flow in the normal and in the sympathectomised hand. American Journal of Physiology, 113, 384–398

    Google Scholar 

  • Greenfield, A. D. M. (1963). The circulation through the skin. In Hamilton, W. F. (ed.), Handbook of Physiology: Circulation, Section 2, Vol. II, American

    Google Scholar 

  • Physiological Society, Washington DC, pp. 1325–1351

    Google Scholar 

  • Henriksen, O. (1977). Local sympathetic reflex mechanism in regulation of blood flow in human subcutaneous adipose tissue. Acta Physiologica Scandinavica (suppl.), 450, 7–48

    Google Scholar 

  • Holloway, G. A., Daly, C. H., Kennedy, D. and Chimoskey, J. (1976). Effects of external pressure loading on human skin blood flow measured by 133Xe clearance. Journal of Applied Physiology, 40, 597–600

    PubMed  CAS  Google Scholar 

  • Imms, F. J., Lee, Wew-Sen and Ludlow, P. G. (1988). Reactive hyperaemia in the human forearm. Quarterly Journal of Experimental Physiology, 73, 203–215

    Article  PubMed  CAS  Google Scholar 

  • Johnson, P. C. (1964). Origin, localisation, and homeostatic significance of autoregulation in the intestine. Circulation Research, 14, 15, Suppl. 1, 225–232

    Google Scholar 

  • Johnson, P. C. and Wayland, H. (1967). Regulation of blood flow in single capillaries. American Journal of Physiology, 212, 1405–1415

    PubMed  CAS  Google Scholar 

  • Levick, J. R. and Michel, C. C. (1978). The effects of position and skin temperature on the capillary pressures in the fingers and toes. Journal of Physiology, 274, 97–109

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lewis, T. (1927). The Blood Vessels of the Human Skin and their Responses, Shaw, London

    Google Scholar 

  • Lewis, T. and Grant, R. T. (1925). Observations upon reactive hyperaemia in man. Heart, 12, 73–120

    Google Scholar 

  • Mellander, S., Oberg, B. and Odelram, H. (1964). Vascular adjustments to increased transmural pressure in cat and man with special reference to shifts in capillary fluid transfer. Acta Physiologica Scandinavica, 61, 34–48

    Article  PubMed  CAS  Google Scholar 

  • Moyses, C, Cederholm-Williams, S. A. and Michel, C. C. (1987). Haemoconcen-tration and accumulation of white cells in the feet during venous stasis. Internal Journal of Microcirculation: Clinical & Experimental, 5, 311–320

    CAS  Google Scholar 

  • Nielsen, H. V. (1982). Effects of externally applied compression on blood flow in subcutaneous and muscle tissue in the human supine leg. Clinical Physiology, 2, 447–457

    Google Scholar 

  • Romanus, E. M. (1976). Microcirculatory reactions to controlled tissue ischaemia and temperature: A vital microscopic study on the hamster’s cheek pouch. In Kenedi et al. Bed Sore Biomechanics, pp. 79–82

    Google Scholar 

  • Sejrsen, P., Henriksen, O. and Paaske, W. P. (1981). Effect of orthostatic blood pressure changes upon capillary filtration-absorption rate in the human calf. Acta Physiologica Scandinavica, 111, 287–291

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1990 The editor and contributors

About this chapter

Cite this chapter

Michel, C.C., Gillott, H. (1990). Microvascular Mechanisms in Stasis and Ischaemia. In: Bader, D.L. (eds) Pressure Sores - Clinical Practice and Scientific Approach. Palgrave, London. https://doi.org/10.1007/978-1-349-10128-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-10128-3_12

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-10130-6

  • Online ISBN: 978-1-349-10128-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics