Serotonin pp 77-83 | Cite as

Neuronal Actions of 5-Hydroxytryptamine: An Overview

  • I. S. de la Lande
  • E. J. Mylecharane
Part of the Satellite Symposia of the IUPHAR 10th International Congress of Pharmacology book series (SSNIC)


The diversity of the effects of 5-hydroxytryptamine (5-HT) is clearly evident when its neuronal actions are considered. The data presented in this session described excitatory and inhibitory actions, in the periphery and the CNS; all three of the recognized 5-HT receptor types may be involved, as is at least one other type. Particular aspects of the contributions in this session attracted much comment, as did some of the data presented in the poster discussion session.


Dorsal Raphe Myenteric Neurone Nucleus Raphe Obscurus Neuroexcitatory Effect Cardiac Sympathetic Nerve Terminal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnt, J., Hyttel, J. and Larsen, J. J. (1984). The citalopram/5-HTP-induced head shake syndrome is correlated to 5-HT2 receptor affinity and also influenced by other transmitters. Acta Pharmacol. Toxicol., 55, 363–372Google Scholar
  2. Arriaga, F., Leitao, J., Mills, F. J., Padma, J., Ruiz, I., Tropa, J. and Sousa, M. P. (1984). R55667, an effective non-benzodiazepine anxiolytic. Proc. 14th CINP Congress, 726Google Scholar
  3. Bendotti, C. and Samanin, R. (1986). 8-Hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT) elicits eating in free-feeding rats by acting on central serotonin neurons. Eur. J. Pharmacol., 121, 147–150Google Scholar
  4. Bevan, P., Tulp, M. T. M. and Wouters, W. (1986). Are 5-HT1A binding sites relevant for the antihypertensive effects of DU 29373? Br. J. Pharmacol., 89, 637PGoogle Scholar
  5. Bockaert, J., Dumuis, A., Bouhelal, R., Sebben, M. and Cory, R. N. (1987). Piperazine derivatives including the putative anxiolytic drugs, buspirone and ipsapirone, are agonists at 5-HT1A receptors negatively coupled with adenylate cyclase in hippocampal neurons. Naunyn-Schmiedeberg’s Arch. Pharmacol., 335, 588–592Google Scholar
  6. Costall, B., Domeney, A. M., Naylor, R. J. and Tyers, M. B. (1987). Effects of the 5-HT3 receptor antagonist GR 38072F, on raised dopaminergic activity in the mesolimbic system of the rat and marmoset brain. Br. J. Pharmacol., 92, 881–894Google Scholar
  7. Cunningham, K. A., Callahan, P. M. and Appel, J. B. (1987). Discriminative stimulus properties of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT): implications for understanding the actions of novel anxiolytics. Eur. J. Pharmacol., 138, 29–36Google Scholar
  8. Davis, M. (1980). Neurochemical modulation of sensory-motor reactivity: acoustic and tactile startle reflexes. Neurosci. Biobehav. Rev., 4, 241–263Google Scholar
  9. Davis, M., Cassella, J. V., Wrean, W. H. and Kehne, J. H. (1986). Serotonin receptor subtype agonists: Differential effects on sensorimotor reactivity measured with acoustic startle. Psychopharmacol. Bull., 22, 837–843Google Scholar
  10. Delorme, F., Froment, J. L. and Jouvet, M. (1966). Suppression du sommeil par la p-chloromethamphetamine et la pCPA. Comp. Rend. Soc. Biol., 160, 2347–2349Google Scholar
  11. Donohoe, T. P., Hutson, P. H. and Curzon, G. (1987). Blockade of dopamine receptors explains the lack of 5-HT stereotypy on treatment with the putative 5-HT1A agonist LY 165163. Psychopharmacology, 93, 82–86Google Scholar
  12. Dourish, C. T., Hutson, P. H. and Curzon, G. (1986a). Putative anxiolytics 8-OH-DPAT, buspirone and TVX Q 7821 are agonists at 5-HT1A autoreceptors in the raphe nuclei. Trends in Pharmacol. Sci., 7, 212–214Google Scholar
  13. Dourish, C. T., Hutson, P. H., Kennett, G. A. and Curzon, G. (1986b). 8-OH-DPAT-induced hyperphagia: the neural basis and possible therapeutic relevance. Appetite, 7, Suppl., 127–140Google Scholar
  14. Dourish, C. T., Clark, M. L., Fletcher, A. and Iversen, S. D. (1989). Evidence that blockade of 5-HT1 receptors elicits feeding in satiated rats. Psychopharmacology, 97, 54–58Google Scholar
  15. Dugovic, C. and Wauquier, A. (1987). 5-HT2 receptors could be primarily involved in the regulation of slow-wave sleep in the rat. Eur. J. Pharmacol., 137, 145–146Google Scholar
  16. Dzoljic, M. R., Saxena, P. R. and Ukponmwan, O. E. (1986). Activation of ‘5-HT1-like’ receptors stimulates wakefulness. Br. J. Pharmacol., 89, 522PGoogle Scholar
  17. Fozard, J. R. and Tricklebank, M. D. (1983). Differential effects of putative 5-HT1receptor agonists on responses to noxious stimuli. Naunyn-Schmiedeberg’s Arch. Pharmacol., 324, Suppl., R20Google Scholar
  18. Glennon, R. A., Young, R., Jacyno, J. M., Slusher, R. M. and Rosecrans, J. A. (1983). DOM-stimulus generalization to LSD and other hallucinogenic indoleal-kylamines. Eur. J. Pharmacol., 86, 453–459Google Scholar
  19. Gower, A. J. and Tricklebank, M. D. (1988). Alpha 2-adrenoceptor antagonist activity may account for the effects of buspirone in an anticonflict test in the rat. Eur. J. Pharmacol., 155, 129–137Google Scholar
  20. Hagan, R. M., Butler, A., Hill, J. M., Jordan, C. C., Ireland, S. J. and Tyers, M. B. (1987). Effect of the 5-HT3 receptor antagonist, GR 38032F, on responses to injection of a neurokinin agonist into the ventral tegmental area of the rat brain. Eur. J. Pharmacol., 138, 303–305Google Scholar
  21. Hibert, M., Mir, A. K., Maghioros, G., Moser, P., Middlemiss, D. N., Tricklebank, M. D. and Fozard, J. R. (1988). The pharmacological properties of MDL 73005EF: A potent and selective ligand at 5-HT1A receptors. Br. J. Pharmacol., 93, 2PGoogle Scholar
  22. Hjorth, S. and Carlsson, A. (1982). Buspirone: effects on central monoamine transmission — possible relevance to animal experimental and clinical findings. Eur. J. Pharmacol., 83, 299–303Google Scholar
  23. Hutson, P. H., Donohoe, T. P. and Curzon, G. (1987). Neurochemical and behavioural evidence for an agonist action of 1-[2-(4-aminophenyl)ethyl]-4-(3-trifluoromethylphenyl)piperazine (LY 165163) at central 5-HT receptors. Eur. J. Pharmacol., 138, 215–223Google Scholar
  24. Idzikowski, C., Mills, F. J. and Glennard, R. (1986). 5-Hydroxytryptamine-2 antagonist increases human slow wave sleep. Brain Res., 378, 164–168Google Scholar
  25. Iversen, S. D. (1984). 5-HT and anxiety. Neuropharmacology, 23, 1553–1560Google Scholar
  26. Jones, B. J., Oakley, N. R. and Tyers, M. D. (1987). The anxiolytic activity of GR 38032F, a 5-HT3 receptor antagonist, in the rat and Cynomolgus monkey. Br. J. Pharmacol., 90, 88PGoogle Scholar
  27. Kennett, G. A., Dourish, C. T. and Curzon, G. (1987). 5-HT1B agonists induce anorexia at a postsynaptic site. Eur. J. Pharmacol., 141, 429–435Google Scholar
  28. Lucki, I., Nobler, M. S. and Frazer, A. (1984). Differential actions of serotonin antagonists on two behavioural models of serotonin receptor activation in the rat. J. Pharmacol. Exp. Ther., 228, 133–139Google Scholar
  29. McKenney, J. D. and Glennon, R. A. (1986). TFMPP may produce its stimulus effects via a 5-HT1B mechanism. Pharmacol. Biochem. Behav., 24, 43–47Google Scholar
  30. Messing, R. B., Fisher, L. A., Phebus, L. and Lytle, L. D. (1976). Interaction of diet and drugs in the regulation of brain 5-hydroxyindoles and the response to painful electric shock. Life Sci., 18, 707–714Google Scholar
  31. Mir, A. K., Hibert, M., Tricklebank, M. D., Middlemiss, D. N., Kidd, E. J. and Fozard, J. R. (1988). MDL 72832: A potent, selective and stereospecific ligand with mixed agonist, antagonist properties at both central and peripheral 5-HT1Areceptors. Eur. J. Pharmacol., 149, 107–120Google Scholar
  32. Moser, P., Hibert, M., Middlemiss, D. N., Mir, A. K., Tricklebank, M. D. and Fozard J. R. (1988). Effects of MDL 73005EF in animal models predictive of anxiolytic activity. Br. J. Pharmacol., 93, 3PGoogle Scholar
  33. Peroutka, S. J. (1985). Selective interaction of novel anxiolytics with 5-hydroxytryptamine1A receptors. Biol. Psychiat., 20, 971–979Google Scholar
  34. Ransom, R. W., Asarch, K. B. and Shih, J. C. (1986). [3H]1-[2-(4-Aminophenyl)ethyl]-4-(3-trifluoromethylphenyl)piperazine: a selective radioli-gand for 5-HT1A receptors in rat brain. J. Neurochem., 46, 68–75Google Scholar
  35. Tricklebank, M. D., Forler, C. and Fozard, J. R. (1984). The involvement of subtypes of the 5-HT1 receptor and of catecholaminergic systems in the behavioural response to 8-hydroxy-2-(di-n-propylamino)tetralin in the rat. Eur. J. Pharmacol., 106, 271–282Google Scholar
  36. Tricklebank, M. D., Forler, C., Middlemiss, D. N. and Fozard, J. R. (1985). Subtypes of the 5-HT receptor mediating the behavioural responses to 5-methoxy-N,N-dimethyltryptamine in the rat. Eur. J. Pharmacol., 117, 15–24Google Scholar
  37. Tricklebank, M. D., Neill, J., Kidd, E. J. and Fozard, J. R. (1987). Mediation of the discriminative stimulus properties of 8-hydroxy-2-(di-n-propylamine)tetralin by the putative 5-HT1A receptor. Eur. J. Pharmacol., 133, 47–56Google Scholar
  38. Tyers, M. B., Costall, B., Domeney, A., Jones, B. J., Kelly, M. E., Naylor, R. J. and Oakley, N. R. (1987). The anxiolytic activities of 5HT3 antagonists in laboratory animals. Neurosci. Lett., Suppl. 29, S68.Google Scholar

Copyright information

© The editors and contributors 1989

Authors and Affiliations

  • I. S. de la Lande
    • 1
  • E. J. Mylecharane
    • 2
  1. 1.Department of Clinical and Experimental PharmacologyUniversity of AdelaideAdelaideAustralia
  2. 2.Department of PharmacologyUniversity of SydneySydneyAustralia

Personalised recommendations