Functional Specificity of Nigral Grafts in Dopamine-depleted Rats

  • S. B. Dunnett
  • T. D. Hernandez
Part of the Satellite Symposia of the IUPHAR 10th International Congress of Pharmacology book series (SSNIC)


In 1979, two independent research groups first reported that embryonic dopamine cells transplanted to the forebrain of dopamine-depleted rats could exert a functionally beneficial influence on the behavioural deficits of the host animals (Bjorklund and Stenevi, 1979; Perlow et al., 1979). In the intervening years there have been many reports of the functional capacity of neural grafts in a number of different model systems (Bjorklund and Stenevi, 1985). However, dopamine lesions and grafts remain the most widely studied functional model system in rodents, and preliminary studies of functional benefits have also been reported in monkeys (Redmond et al., 1986).


Dopamine Cell Motor Asymmetry Independent Research Group Host Brain Tactile Extinction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, G.A., DeLong, M.R. and Strick, P.L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Ann. Rev. Neurosci., 9, 357–381.CrossRefPubMedGoogle Scholar
  2. Backlund, E.O., Granberg, P.O., Hamberger, B., Knutsson, E., Martensson, A., Sedvall, G., Seiger, A. and Olson, L. (1985). Transplantation of adrenal medullary tissue to striatum in parkinsonism: first clinical trial. J. Neurosurg., 62, 169–173.CrossRefPubMedGoogle Scholar
  3. Barth, T.M., Lindner, M.D. and Schallen, T. (1983). Sensorimotor asymmetries and tactile extinction in unilateral frontal cortex-damaged and striatal dopamine-depleted rats. Neurosci. Abstr., 9, 482.Google Scholar
  4. Bjorklund, A. and Stenevi, U. (1979). Reconstruction of the nigrostriatal dopamine pathway by intracerebral nigral transplants. Brain Res., 177, 555–560.CrossRefPubMedGoogle Scholar
  5. Bjorklund, A. and Stenevi, U., eds. (1985). Neural Transplantation in the Mammalian CNS. Elsevier, Amsterdam.Google Scholar
  6. Bjorklund, A., Dunnett, S.B., Stenevi, U., Lewis, M.E. and Iversen, S.D. (1980). Reinnervation of the denervated striatum by substantia nigra transplants: funtional consequences as revealed by pharmacological and sensorimotor testing. Brain Res, 199, 307–333.CrossRefPubMedGoogle Scholar
  7. Dunnett, S.B., Bjorklund, A., Stenevi, U., and Iversen, S.D. (1981a). Behavioural recovery following transplantation of substantia nigra in rats subjected to 6-OHDA lesions of the nigrostriatal pathway. I. Unilateral lesions. Brain Res., 215, 147–161.CrossRefPubMedGoogle Scholar
  8. Dunnett, S.B., Bjorklund, A., Stenevi, U., and Iversen, S.D. (1981b). Grafts of embryonic substantia nigra reinnervating the ventrolateral striatum ameliorate sensorimotor impairments and akinesia in rats with 6-OHDA lesions of the nigrostriatal pathway. Brain Res., 229, 209–217.CrossRefPubMedGoogle Scholar
  9. Dunnett, S.B. Hernandez, T.D., Summerfield, A., Jones, G.H. and Arbuthnott, G. (1988). Graft-derived recovery from 6-OHDA lesions: specificity of ventral mesencephalic graft tissue. Exp. Brain Res., submitted.Google Scholar
  10. Dunnett, S.B., Whishaw, I.Q., Rogers, D.C. and Jones, G.H. (1987). Dopamine-rich grafts ameliorate whole body motor asymmetry and sensory neglect but not independent limb use in rats with 6-hydroxydopamine lesions. Brain Res., 415, 63–78.CrossRefPubMedGoogle Scholar
  11. Freed, W.J., Morihisa, J.M., Spoor, E., Hoffer, B.J., Olson, L., Seiger, A. and Wyatt, R.J. (1981). Transplanted adrenal chromaffin cells in rat brain reduce lesion-induced rotational behaviour. Nature, 292, 351–352.CrossRefPubMedGoogle Scholar
  12. Freund, T., Bolam, P., Bjorklund, A., Stenevi, U., Dunnett, S.B., Powell, J.F. and Smith, A.D. (1985). Efferent synaptic connections of grafted dopaminergic neurons reinnervating the host neostriatum: a tyrosine hydroxylase immunocytochemical study. J. Neurosci., 5, 603–616.PubMedGoogle Scholar
  13. Gage, F.H., Stenevi, U., Carlstedt, T., Foster, G., Bjorklund, A. and Aguayo, A.J. (1985). Anatomical and functional consequences of grafting mesencephalic neurons into a peripheral nerve “bridge” connected to the denervated striatum. Exp. Brain Res., 60, 584–589.CrossRefPubMedGoogle Scholar
  14. Kesslak, J.P., Nieto-Sampedro, M., Globus, J. and Cotman, C.W. (1986). Transplants of purified astrocytes promote behavioral recovery after frontal cortex ablation. Exp. Neurol., 92, 377–390.CrossRefPubMedGoogle Scholar
  15. Madrazo, I., Drucker-Colin, R., Diaz, V., Martinez-Mata, J., Torres, C. and Becerril, J.J. (1987). Open microsurgical autograft of adrenal medulla to the right caudate nucleus in two patients with intractable Parkinson’s disease. New Eng. J. Med., 316, 831–834.CrossRefPubMedGoogle Scholar
  16. Morihisa, J.M., Nakamura, R.K., Freed, W.J., Mishkin, M. and Wyatt, R.J. (1984). Adrenal medulla grafts survive and exhibit catecholamine-specific fluorescence in the primate brain. Exp Neurol., 84, 643–653.CrossRefPubMedGoogle Scholar
  17. Perlow, M.J., Freed, W.J., Joffer, B.J., Seiger, A., Olson, L. and Wyatt, R.J. (1979). Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science, 204, 643–647.CrossRefPubMedGoogle Scholar
  18. Redmond, D.E., Sladek, J.R., Roth, R.H., Collier, T.J., Eisworth, J.D., Deutsch, A.Y. and Haber, S. (1986). Fetal neuronal grafts in monkeys given methylphenyltetrahydropyridine. Lancet, i, 1125–1127.CrossRefGoogle Scholar
  19. Schallert, T., Hernandez, T.D. and Barth, T.M. (1986) Recovery of function after brain damage: severe and chronic disruption by diazepam. Brain Res., 379, 104–111.CrossRefPubMedGoogle Scholar
  20. Schallert, T., Upchurch, M., Lobaugh, N., Farrar, S.B., Spriduso, W.W., Gilliam, P., Vaughn, D. and Wilcox, R.E. (1982). Tactile extinction: distinguishing between sensorimotor and motor asymmetries in rats with unilateral nigrostriatal damage. Pharmacol. Biochem. Behav., 16, 455–462.CrossRefPubMedGoogle Scholar
  21. Schallert, T., Upchurch, M., Wilcox, R.E. and Vaughn, D.M. (1983) Posture-independent sensorimotor analysis of interhemispheric receptor asymmetries in rats with unilateral nigrostriatal damage. Pharmacol. Biochem. Behav., 18, 753–759.CrossRefPubMedGoogle Scholar
  22. Schallert, T. and Whishaw, I.Q. (1984). Neonatal hemidecortication and bilateral cutaneous stimulation in rats, Dev. Psychobiol., 18, 501–514.CrossRefGoogle Scholar

Copyright information

© S.B. Dunnett and T.D. Hernandez 1988

Authors and Affiliations

  • S. B. Dunnett
    • 1
  • T. D. Hernandez
    • 1
  1. 1.Department of Experimental PsychologyCambridgeUK

Personalised recommendations