Skip to main content

Photochemical Aspects of Vision

  • Chapter
  • 111 Accesses

Abstract

The receptors that mediate vision at night are the rods which, as mentioned earlier, contain a pigment—visual purple or rhodopsin—responsible for the absorption of light in the primary photochemical event leading to sensation. According to the photochemist, then, the visual process consists of the absorption of light by a specialized molecule, visual purple or rhodopsin. The absorption of light provides the rhodopsin molecule with a supply of extra energy and it is said, in this state, to be ‘activated’. In this activated state it is highly unstable and so it will change to a new form, i.e. the molecule will undergo some kind of chemical change by virtue of this absorption of energy. The effects of this change will be to cause an ‘excited’ condition of the rod as a whole and it will be this excited condition that will ultimately lead to the sensation of light.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahamson, E. W. & Ostroy, S. E. (1967) The photochemical and macromolecular aspects of vision. Progr. Biophys. 17, 181–215.

    Google Scholar 

  • Abrahamson, E. W. & Wiesenweld, J. R. (1972), The structure, spectra, and reactivity of visual pigments. Hdb. Sensory Physiol. 7/1, 69–121.

    Google Scholar 

  • Adler, A. J. & Evans, C. D. (1985) Some functional characteristics of purified bovine interphotoreceptor retinol-binding protein. Invest. Ophthal. 26, 273–282.

    Google Scholar 

  • Adler, A. J. & Martin, K. J. (1982) Retinol binding proteins in bovine interphotoreceptor matrix. Biochem. Biophys. Res. Commun. 108, 1601.

    Google Scholar 

  • Allen, D. M. & McFarland, W. N. (1973) The effect of temperature on rhodopsin-porphyropsin ratios in a fish. Vision Res. 13, 1303–1309.

    Google Scholar 

  • Alvarez, R. A., Bridges, C. D. B. & Fong, S.-L. (1981) High-pressure liquid chromatography of fatty acid esters of retinol isomers. Invest. Ophthal. 20, 304–313.

    Google Scholar 

  • Amer, S. & Akhtar, M. (1972) The regeneration of rhodopsin from all-trans retinal: Solubilization of enzyme system involved in the completion of the visual cycle. Biochem. J. 128, 987–989.

    Google Scholar 

  • Amer, S. & Akhtar, M. (1973) Studies on the regeneration of rhodopsin from all-trans retinal in isolated rat retinae. Nature 245, 221–223.

    Google Scholar 

  • Anderson, D. H. & Fisher, S. K. (1976) The photoreceptors of diurnal squirrels; outer segment structure, disc shedding and protein renewal. J. Ultrastr. Res. 55, 119–141.

    Google Scholar 

  • Anderson, D. H., Fisher, S. K., Erickson, P. A. & Tabor, G. A. (1980) Rod and cone disc shedding in the rhesus monkey retina: a quantiative study. Exp. Eye Res. 30, 559–574.

    Google Scholar 

  • Azuma, K., Azuma, M. & Sickel, W. (1977) Regeneration of rhodopsin in frog rod outer segments. J. Physiol. 271, 747–759.

    Google Scholar 

  • Bairati, A. & Orzalesi, N. (1963) The ultrastructure of the pigment epithelium and of the photoreceptor-pigment epithelium junction. J. Ultrastr. Res. 9, 484–496.

    Google Scholar 

  • Basinger, S., Bok, D. & Hall, M. (1976) Rhodopsin in the rod outer segment plasma membrane. J. Cell Biol. 69, 29–42.

    Google Scholar 

  • Baumann, C. (1970) Regeneration of rhodopsin in the isolated retina of the frog (Rana esculenta). Vision Res. 10, 627–637.

    Google Scholar 

  • Beatty, D. D. (1975) Visual pigments of the American eel Anguilla rostrata. Vision Res. 15, 771–776.

    Google Scholar 

  • Bernstein, S. A., Breding, D. J. & Fisher, S. K. (1984) The influence of light on cone disk shedding in the lizard, Sceloporus occidentalis. J. Cell Biol. 99, 379–389.

    Google Scholar 

  • Besharse, J. C. & Pfenninger, K. H. (1980) Membrane assembly in retinal photoreceptors I. Freeze-fracture analysis of cytoplasmic vesicles in relationship to disc assembly. J. Cell Biol. 87, 451–463.

    Google Scholar 

  • Bibb, C. & Young, R. W. (1974) Renewal of glycerol in the visual cells and pigment epithelium of the frog retina. J. Cell Biol. 62, 378–389.

    Google Scholar 

  • Blasie, J. K. & Worthington, C. R. (1969) Planar liquid-like arrangement of photopigment molecule in frog retinal receptor disk membranes. J. Mol. Biol. 39, 417–439.

    Google Scholar 

  • Blazynski, C. & Ostroy, S. E. (1984) Pathways in the hydrolysis of vertebrate rhodopsin. Vision Res. 24, 459–470.

    Google Scholar 

  • Bok, D. (1985) Retinal photoreceptor-pigment epithelium interactions. Invest. Ophthal. 26, 1659–1694.

    Google Scholar 

  • Bok, D. & Hall, M. D. (1971) The role of the pigment epithelium in the etiology of inherited retinal dystrophy in the rat. J. Cell Biol. 49, 664–682.

    Google Scholar 

  • Bok, D. & Heller, J. (1976) Transport of retinol from the blood to the retina: an autoradiographic study of the pigment epithelial cell surface receptor for plasma retinol-binding protein. Exp. Eye Res. 22, 395–402.

    Google Scholar 

  • Bok, D., Ong, D. E. & Chytil, F. (1984) Immunocytochemical localization of cellular retinol binding protein in the rat retina. Invest. Ophthal. 25, 877–883.

    Google Scholar 

  • Bok, D. & Young, R. W. (1972) The renewal of diffusely distributed protein in the outer segments of rods and cones. Vision Res. 12, 161–168.

    Google Scholar 

  • Borggreven, J. M. P. M., Rotmans, J. P., Bonting, S. L. & Daemen, F. J. M. (1971) The role of phospholipids in cattle rhodopsin studied with phospholipase C. Arch. Biochem. Biophys. 145, 290–299.

    Google Scholar 

  • Bowmaker, J. K. & Martin, G. R. (1984) Colour vision in the penguin, Spheniscus humboldti: a microspectrofluorometric study. Vision Res. 24, 1702 (Abstr.).

    Google Scholar 

  • Bownds, D. (1967) Site of attachment of retinal in rhodopsin. Nature 216, 1178–1181.

    Google Scholar 

  • Bridges, C. D. B. (1961) Studies on the flash photolysis of visual pigments. Biochem. J. 79, 128–134.

    Google Scholar 

  • Bridges, C. D. B. (1964) The distribution of visual pigments in freshwater fishes. Abstr. Fourth Internat. Congr. Photobiol., Oxford, p. 53. Bucks: Beacon Press.

    Google Scholar 

  • Bridges, C. D. B. (1972) The rhodopsin-porphyropsin system. In: Handbook of Sensory Physiology. VII/1, pp. 417–486. Springer: Berlin.

    Google Scholar 

  • Bridges, C. D. B. (1976) Vitamin A and the role of the pigment epithelium during bleaching and regeneration of rhodopsin in the frog eye. Exp. Eye Res. 22, 435–455.

    Google Scholar 

  • Bridges, C. D. B., Alvarez, R. A., Fong, S.-L., Gonzalez-Fernandez, F., Lam, D. K. & Liou, G. I. (1984) Visual cycle in the mammalian eye. Retinoid binding protein and the distribution of 11-cis retinoids. Vision Res. 24, 1581–1594.

    Google Scholar 

  • Bunt-Milam, A. H. & Saari, J. C. (1983) Immunocytochemical localization of two retinoid-binding proteins in vertebrate retina. J. Cell Biol. 97, 703–712.

    Google Scholar 

  • Chader, G. J. & Wiggert, B. (1984) Interophotoreceptor retinoid-binding protein. Characteristics in bovine and monkey. Vision Res. 24, 1605–1614.

    Google Scholar 

  • Chader, G. J., Wiggert, B., Lai, Y.-L., Lee, L. & Fletcher, R. T. (1983) Interophotoreceptor retinol-binding protein: a possible role in retinoid transport in the retina. Progr. Ret. Res. 2, 163–189.

    Google Scholar 

  • Cohen, D. & Nir, I. (1983) Cytochemical evaluation of anionic sites on the surface of cultured pigment epithelium cells from normal and dystrophic RCS rats. Exp. Eye Res. 37, 575–582.

    Google Scholar 

  • Collins, F. D. & Morton, R. A. (1950) Studies on rhodopsin. I–III. Biochem. J. 47, 3–9, 10–17, 18–24.

    Google Scholar 

  • Crescitelli, F. (1985) Some properties of solubilized human rhodopsin. Exp. Eye Res. 40, 521–535.

    Google Scholar 

  • Crescitelli, F. & Dartnall, H. J. A. (1953) Human visual purple. Nature 172, 195–196.

    Google Scholar 

  • Daemen, F. J. M., Rotmans, J. P. & Bonting, S. L. (1974) On the rhodopsin cycle. Exp. Eye Res. 18, 97–103.

    Google Scholar 

  • Danielli, J. F. & Davson, H. (1935) A contribution to the theory of permeability of thin films. J. cell. comp. Physiol. 5, 495.

    Google Scholar 

  • Dartnall, H. J. A. (1957) The Visual Pigments. London: Methuen.

    Google Scholar 

  • Dartnall, H. J. A., Lander, M. R. & Munz, F. W. (1961) Periodic changes in the visual pigment of a fish. In Progress in Photobiology, pp. 203–213. Amsterdam, Elsevier.

    Google Scholar 

  • Dartnall, H. J. A. & Lythgoe, J. N. (1965) The spectral clustering of visual pigments. Vision Res. 5, 81–100.

    Google Scholar 

  • Davison, M. D. & Findlay, J. B. C. (1986) Modification of ovine opsin with photosensitive hydrophobic probe 1-azide-4-[125I] iodobenzene. Labelling of the chromophore-attachment domain. Biochem. J. 234, 413–420.

    Google Scholar 

  • DeFoe, D. M. & Bok, D. (1983) Rhodopsin chromophore exchanges among opsin molecules in the dark. Invest. Ophthal. 24, 1211–1226.

    Google Scholar 

  • DeGrip, W. J., Bonting, S. L. & Daeman, F. J. M. (1973) The binding site of retinaldehyde in cattle rhodopsin. Biochim. biophys. Acta 303, 189–193.

    Google Scholar 

  • DeGrip, W. J., Van de Laar, G. L. M., Daemen, F. J. M. & Bonting, S. L. (1973) Biochemical aspects of the visual process. XXIII. Biochim. biophys. Acta 325, 315–322.

    Google Scholar 

  • Denton, E. J. (1959) The contribution of the photosensitive and other molecules to the absorption of whole retina. Proc. Roy. Soc., B 150, 78–94.

    Google Scholar 

  • Denton, E. J. & Warren, F. J. (1956) Visual pigments of deep sea fish. Nature 178, 1059.

    Google Scholar 

  • Ditto, M. (1975) A difference between developing rods and cones in the formation of the outer segment membranes. Vision Res. 15, 535–536.

    Google Scholar 

  • Dowling, J. E. (1960) Chemistry of visual adaptation in the rat. Nature 188, 114–118.

    Google Scholar 

  • Dowling, J. E. & Hubbard, R. (1963) Effect of brilliant flashes on light and dark adaptation. Nature 199, 972–975.

    Google Scholar 

  • Fager, L. Y. & Fager, R. S. (1981) Chicken blue and chicken violet, short wavelength sensitive visual pigments. Vision Res. 21, 581–586.

    Google Scholar 

  • Fager, R. S., Sejnowski, P. & Abrahamson, E. W. (1972) Aqueous cyanohydridoborate reduction of the rhodopsin chromophore. Biochem. Biophys. Res. Comm. 47, 1244–1247.

    Google Scholar 

  • Frank, R. N. (1969) Photoproducts of rhodopsin bleaching in the isolated, perfused frog retina. Vision Res. 9, 1415–1433.

    Google Scholar 

  • Fukuda, M. N., Papermaster, D. S. & Hargrave, P. A. (1979) Rhodopsin carbohydrate. Structure of small oligosaccharides attached at two sites near the NH2 terminus. J. Biol. Chem. 254, 8201–8207.

    Google Scholar 

  • Gonzalez-Fernandez, F., Fong, S.-L., Liou, I. & Bridges, C. D. B. (1985) Intetstitial retinal-binding protein (IRBP) in the RCS rat: effect of dark-rearing. Invest. Ophthal. 26, 1381–1385.

    Google Scholar 

  • Hagins, W. A. (1956) Flash photolysis of rhodopsin in the retina. Nature 177, 989–990.

    Google Scholar 

  • Hargrave, P. A. et al. (1983) The structure of bovine rhodopsin. Biophys. Struct. Mech. 9, 235–241. (Quoted by Hargrave et al., 1984.)

    Google Scholar 

  • Hargrave, P. A., McDowell, J. H., Feldmann, R. J., Atkinson, P. H., Rao, J. K. M. & Argos, P. (1984) Rhodopsin’s protein and carbohydrate structure: selected aspects. Vision Res. 24, 1487–1499.

    Google Scholar 

  • Harosi, F. I. & MacNichol, E. F. (1974) Visual pigments of goldfish cones. Spectral properties and dichroism. J. gen. Physiol. 63, 279–304.

    Google Scholar 

  • Heller, J. (1968) Purification, molecular weight, and composition of bovine visual pigment. Biochem. 7, 2906–2913.

    Google Scholar 

  • Heller, J. (1975) Interactions of plasma retinol-binding protein with its receptor. J. Biol. Chem. 250, 3613–3619.

    Google Scholar 

  • Heller, J. & Bok, D. (1976) Transport of retinol from the blood to the retina: involvement of high molecular weight lipoproteins as intracellular carriers. Exp. Eye Res. 22, 403–410.

    Google Scholar 

  • Herman, K. G. & Steinberg, R. H. (1982) Phagosome movement and the diurnal pattern of phagocytosis in the tapetal retinal pigment epithelium of the opossum. Invest. Ophthal. 23, 277–290.

    Google Scholar 

  • Hogan, M. J. & Wood, I. (1974) Phagocytosis by pigment epitheium of human retinal cones. Nature 252, 305–307.

    Google Scholar 

  • Hollyfield, J. G., Fliesler, S. J., Rayborn, M. E., Fong, S. L., Landers, R. A. & Bridges, C. D. B. (1985) Synthesis and secretion of interstitial retinol-binding protein by the human retina. Invest. Ophthal. 26, 58–67.

    Google Scholar 

  • Huang, P. T., Spira, A. W. & Wyse, J. P. H. (1982) Phagocytosis in the fetal pigment epithelium: evidence for cyclic activity. Invest, Ophthal. 22, 428–438.

    Google Scholar 

  • Hubbard, R. & Colman, A. D. (1959) Vitamin A content of the frog eye during light and dark adaptation. Science 130, 977–978.

    Google Scholar 

  • Hubbard, R. & Kropf, A. (1959) Molecular aspects of visual excitation. Ann. N.Y. Acad. Sci. 81, 388–398.

    Google Scholar 

  • Hubbard, R. & Wald, G. (1952) Cis-trans isomers of vitamin A and retinene in the rhodopsin system. J. gen. Physiol. 36, 269–315.

    Google Scholar 

  • Jancsó, N. & Jancsó, H. (1936) Fluoreszenmikroskopische Beobachtung der reversiblen Vitamin-Bildung in der Netzhaut während des Sehaktes. Biochem. Z. 287, 289–290.

    Google Scholar 

  • Jan, L. Y. & Revel, J.-P. (1974) Ultrastructural localization of rhodopsin in the vertebrate retina. J. Cell Biol. 62, 257–263.

    Google Scholar 

  • Knowles, A. & Dartnall, H. J. A. (1977) The Photobiology of Vision. Vol. 2B, The Eye (Ed. Davson, H.). Academic Press, New York and London.

    Google Scholar 

  • Köttgen, E. & Abelsdorff, G. (1896) Absorption und Zersetzung des Sehpurpurs bei den Wirbeltieren. Z. Psychol. Physiol. Sinnesorg. 12, 161–184.

    Google Scholar 

  • Lai, Y.-L., Wiggert, B., Liu, Y. P. & Chader, G. J. (1982). Interphotoreceptor retinol-binding proteins: possible transport vehicles between compartments of the retina. Nature 298, 848.

    Google Scholar 

  • La Vail, M. M. (1976) Rod outer segment disc shedding in relation to cyclic lighting. Exp. Eye Res. 23, 277–280.

    Google Scholar 

  • Liang, C.-J., Yamashita, K., Muellenberg, C. G., S¢hichi, H. & Kobata, A. (1979) Structure of the carbohydrate moieties of bovine rhodopsin. J. Biol. Chem. 254, 6414–6418.

    Google Scholar 

  • Liebman, P. A. & Entine, G. (1968) Visual pigments of frog and tadpole (Rana pipiens). Vision Res. 8, 761–775.

    Google Scholar 

  • Liebman, P. A., Jagger, W. S., Kaplan, M. W. & Bargoot, F. G. (1974) Membrane structure changes in rod outer segments associated with rhodopsin bleaching. Nature 251, 31–36.

    Google Scholar 

  • Liou, G. I., Bridges, C. D. B., Fong, S.-L., Alvarez, R. A. & Gonzalez-Fernandez, F. (1982) Vitamin A transport between retina and pigment epithelium—an interstitial protein carrying endogenous retino (interstitial retinol-binding protein). Vision Res. 22, 1457–1467.

    Google Scholar 

  • Long, K. O., Fisher, S. K., Fariss, R. N. & Anderson, D. H. (1986) Disc shedding and autophagy in the cone-dominant ground squirrel retina. Exp. Eye Res. 43, 193–205.

    Google Scholar 

  • Lythgoe, J. N. (1979) The Ecology of Vision. Clarendon Press: Oxford.

    Google Scholar 

  • Lythgoe, J. N. (1984) Visual pigments and environmental light. Vision Res. 24, 1539–1550.

    Google Scholar 

  • Lythgoe, R. J. (1937) Absorption spectra of visual purple and visual yellow. J. Physiol. 89, 331–358.

    Google Scholar 

  • Lythgoe, R. J. & Quilliam, J. P. (1938) The relation of transient orange to visual purple and indicator yellow. J. Physiol. 94, 399–410.

    Google Scholar 

  • Maraini, G. & Gozzoli, F. (1975) Binding of retinol to isolated retinal pigment epithelium in the presence and absence of retinol-binding protein. Invest. Ophthal. 14, 785–787.

    Google Scholar 

  • Mathies, R., Oseroff, A. R. & Stryer, L. (1976) Rapid flow resonance Raman spectroscopy of photolabile molecules: rhodopsin and isorhodopsin. Proc. Nat. Acad. Sci. Wash. 73, 1–5.

    Google Scholar 

  • McFarland, W. N. & Munz, F. W. (1975) The evolution of photopic visual pigments in fishes. Vision Res. 15, 1071–1080.

    Google Scholar 

  • Muntz, W. R. A. & Mouat, G. S. V. (1984) Annual variations in the visual pigments of brown trout inhabiting lochs providing different light environments. Vision Res. 24, 1575–1580.

    Google Scholar 

  • Muntz, W. R. A. & Reuter, T. (1966) Visual pigments and spectral sensitivity in Rana temporaria and other European tadpoles. Vision Res. 6, 601–618.

    Google Scholar 

  • Munz, F. W. (1958) Photosensitive pigments from the retinae of certain deep-sea fishes. J. Physiol. 140, 220–235.

    Google Scholar 

  • Nathans, J. & Hogness, D. S. (1983) Isolation, sequence analysis and intron-exon arrangement of the gene encoding bovine rhodopsin. Cell 34, 807–814.

    Google Scholar 

  • Nilsson, S. E. G. (1964) Receptor cell outer segment development and ultra-structure of the disk membranes in the retina of the tadpole (Rana pipiens). J. Ultrastr. Res. 11, 581–620.

    Google Scholar 

  • Nir, I. & Papermaster, D. S. (1983) Differential distribution of opsin in the plasma membrane of frog photoreceptors: an immunocytochemical study. Invest. Ophthal. 24, 868.

    Google Scholar 

  • Ohtsu, K., Naito, K. & Wilt, F. H. (1966) Metabolic basis of visual pigment conversion in metamorphosing Rana catesbiana. Dev. Biol. 10, 216–232.

    Google Scholar 

  • Ovchinnikov, Y. A. et al. (1982) The complete amino acid sequence of visual rhodopsin. Biorg. Khim. 8, 1011–1014.

    Google Scholar 

  • Papermaster, D. S., Converse, C. A. & Siu, J. (1975) Membrane biosynthesis in the frog retina: opsin transport in the photoreceptor cell. Biochemistry 14, 1343–1352.

    Google Scholar 

  • Paulsen, R., Miller, J. A., Brodie, A. E. & Bownds, M. D. (1975) The decay of long-lived photoproducts in the isolated bullfrog rod outer segment: relationship to other dark reactions. Vision Res. 15, 1325–1332.

    Google Scholar 

  • Peters, K., Applebury, M. L. & Rentzepis, P. M. (1977) Primary photochemical event in vision: proton translocation. Proc. Nat. Acad. Sci. 74, 3119–3123.

    Google Scholar 

  • Peters, K.-R., Palade, G. E., Schneider, B. G. & Papermaster, D. S. (1983) Fine structure of a periciliary ridge complex of frog retinal rod cells revealed by ultrahigh resolution scanning electron microscopy. J. Cell Biol. 96, 265–276.

    Google Scholar 

  • Pfeffer, B., Wiggert, B., Lee, L., Zonnenberg, B., Newsome, D. & Chader, G. J. (1983) The presence of a soluble inter-photoreceptor retinoid-binding protein in the retinal inter-photoreceptor space. J. Cell Physiol. 117, 333.

    Google Scholar 

  • Poincelot, R. P., Millar, P. G., Kimbel, R. L. & Abrahamson, E. W. (1969) Lipid to protein chromophore transfer in the photolysis of visual pigments. Nature 221, 256–257.

    Google Scholar 

  • Poo, M. M. & Cone, R. A. (1973) Lateral diffusion of rhodopsin in Necturus rods. Exp. Eye Res. 17, 503–510.

    Google Scholar 

  • Pugh, E. N. (1975) Rhodopsin flash photolysis in man. J. Physiol. 248, 393–412.

    Google Scholar 

  • Richardson, T. M. (1969) Cytoplasmic and ciliary connections between the inner and outer segments of mammalian visual receptors. Vision Res. 9, 727–731.

    Google Scholar 

  • Ripps, H., Mehaffey, L. & Siegel, I. M. (1981) Rhodopsin kinetics in the cat retina. J. Gen. Physiol. 77, 317–334.

    Google Scholar 

  • Ripps, H. & Weale, R. A. (1969) Flash bleaching of rhodopsin in the human retina. J. Physiol. 200, 151–159.

    Google Scholar 

  • Rotmans, J. P., Daemen, F. J. M. & Bonting, S. L. (1974) Biochemical aspects of the visual process. XXVI. Binding site and migration of retinaldehyde during rhodopsin photolysis. Biochim. biophys. Acta 357, 151–158.

    Google Scholar 

  • Saari, J. C., Bunt-Milam, A. H., Bredberg, L. & Garwin, G. G. (1984) Properties and immunocytochemical localization of three retinoid-binding proteins from bovine retina. Vision Res. 24, 1595–1603.

    Google Scholar 

  • Schwanzara, S. A. (1967) The visual pigments of freshwater fishes. Vision Res. 7, 121–148.

    Google Scholar 

  • Spitznas, M. & Hogan, M. J. (1970) Outer segments of photoreceptors and the retinal pigment epithelium. Arch. Ophthal. 84, 810–819.

    Google Scholar 

  • Steinberg, R. H., Wood, I. & Hogan, M. J. (1977) Pigment epithelial ensheathment and phagocytosis of extrafoveal cones in human retina. Phil. Trans. 277, 459–476.

    Google Scholar 

  • Tabor, G. A., Fisher, S. K. & Anderson, D. H. (1979) Evidence for a circadian rhythm of disc shedding in light-entrained gray squirrels. ARVO Suppl. 18, 81.

    Google Scholar 

  • Tabor, G. A., Fisher, S. K. & Anderson, D. H. (1980) Rod and cone disc shedding in light-entrained tree squirrels. Exp. Eye Res. 30, 545–557.

    Google Scholar 

  • Tamai, M., Teirstein, P., Goldman, A., O’Brien, P. & Chader, G. (1978) The pineal gland does not control rod outer segment shedding and phagocytosis in the rat retina and pigment epithelium. Invest. Ophthal. 17, 558–562.

    Google Scholar 

  • Thompson, P. & Findlay, J. B. (1984) Phosphorylation of ovine rhodopsin. Identification of the phosphorylated sites. Biochem. J. 220, 773–780.

    Google Scholar 

  • Trayhurn, P. & Habgood, J. O. (1975) The effect of trypsin on the retinal rod outer segments: trypsin digestion as a means of isolating viable discs. Exp. Eye Res. 20, 479–487.

    Google Scholar 

  • Tsinn, A. T. C. & Beatty, D. D. (1977) Visual pigment changes in rainbow trout in response to temperature. Science 195, 1358–1360.

    Google Scholar 

  • Tsinn, A. T. C. & Beattey, D. D. (1978) Goldfish rhodopsin: P4991. Vision Res. 18, 1453–1455.

    Google Scholar 

  • Wald, G. (1935) Carotenoids and the visual cycle. J. gen. Physiol. 19, 351–371.

    Google Scholar 

  • Wald, G. (1939) The porphyropsin visual system. J. gen. Physiol. 22, 775–794.

    Google Scholar 

  • Wald, G. (1946) The chemical evolution of vision. Harvey Lectures 41, 148–152.

    Google Scholar 

  • Wald, G. (1960) The distribution and evolution of visual systems. In Comparative Biochemistry, vol. I. New York: Academic Press.

    Google Scholar 

  • Wald, G. & Brown, P. K. (1952) The role of sulphydryl groups in the bleaching and synthesis of rhodopsin. J. gen. Physiol. 35, 797–821.

    Google Scholar 

  • Wiggert, B. O. & Chader, G.J. (1975) A receptor for retinol in the developing retina and pigment epithelium. Exp. Eye Res. 21, 143–151.

    Google Scholar 

  • Wiggert, B., Lee, L., O’Brien, P. J. & Chader, G. J. (1984) Synthesis of interphotoreceptor retinol-binding protein (IRBP) by monkey retina in organ culture: effect of monensin. Biochem. Biophys. Res. Comm. 118, 789–796.

    Google Scholar 

  • Wiggert, B., Lee, L., Rodriguez, M., Hess, H., Redmond, T.M. & Chader, G. J. (1986) Immunochemical distribution of inter-photoreceptor retinoid—bindging protein in selected species. Invest. Ophthal., 27, 1041–1049.

    Google Scholar 

  • Wilt, F. H. (1959) The differentiation of visual pigments in metamorphosing larvae of Rana catesbiana. Dev. Biol. 1, 199–233.

    Google Scholar 

  • Wong, J. K. & Ostroy, S. E. (1973) Hydrogen ion changes of rhodopsin. I. Proton uptake during the metarhodopsin I478 metarhodopsin II308 reactions. Arch. Biochem. Biophys. 154, 1–7.

    Google Scholar 

  • Worthington, C. R. (1973) X-ray analysis of retinal photoreceptor structure. Exp. Eye Res. 17, 487–501.

    Google Scholar 

  • Wu, C.-W. & Stryer, L. (1972) Proximity relationships in rhodopsin. Proc. Nat. Acad. Sci. Wash. 69, 1104–1108.

    Google Scholar 

  • Yoshizawa, T. (1972) The behaviour of visual pigments at low temperatures. Hdb. Sensory Physiol. 7(1), 146–179.

    Google Scholar 

  • Yoshizawa, T., Schishida, Y. & Matsuoka, S. (1984) Primary intermediates of rhodopsin studied by low temperature spectrophotometry and laser photolysis. Vision Res. 24, 1455–1463.

    Google Scholar 

  • Young, R. W. (1971) Shedding of discs from rod outer segments in the rhesus monkey. J. Ultrastr. Res. 34, 190–203.

    Google Scholar 

  • Young, R. W. (1972) The daily rhythm of shedding and degradation of cone outer segment membranes in the lizard retina. J. Ultrastr. Res. 61, 172–185.

    Google Scholar 

  • Young, R. W. (1976) Visual cells and the concept of renewal. Invest. Ophthal. 15, 700–725.

    Google Scholar 

  • Zimmerman, W. F. (1974) The distributions and proportions of vitamin A compounds during the visual cycle in the rat. Vision Res. 14, 795–802.

    Google Scholar 

  • Zimmerman, W. F., Lion, R., Daemen, F. J. M., & Bonting, S. L. (1975) Distribution of specific retinol dehydrogenase activities in sub-cellular fractions of bovine retina and pigment epithelium. Exp. Eye Res. 21, 325–332.

    Google Scholar 

  • Zorn, M. (1974) The effect of blocked sulfhydryl groups on the regenerability of bleached rhodopsin. Exp. Eye. Res. 19, 215–221.

    Google Scholar 

  • Zorn, M. & Futterman, S. (1971) Properties of rhodopsin dependent upon associated phospholipid. J. biol. Chem. 246, 881–886.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 1990 Hugh Davson

About this chapter

Cite this chapter

Davson, H. (1990). Photochemical Aspects of Vision. In: Physiology of the Eye. Palgrave, London. https://doi.org/10.1007/978-1-349-09997-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-09997-9_8

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-09999-3

  • Online ISBN: 978-1-349-09997-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics