Advertisement

Photochemical Aspects of Vision

  • Hugh Davson
Chapter

Abstract

The receptors that mediate vision at night are the rods which, as mentioned earlier, contain a pigment—visual purple or rhodopsin—responsible for the absorption of light in the primary photochemical event leading to sensation. According to the photochemist, then, the visual process consists of the absorption of light by a specialized molecule, visual purple or rhodopsin. The absorption of light provides the rhodopsin molecule with a supply of extra energy and it is said, in this state, to be ‘activated’. In this activated state it is highly unstable and so it will change to a new form, i.e. the molecule will undergo some kind of chemical change by virtue of this absorption of energy. The effects of this change will be to cause an ‘excited’ condition of the rod as a whole and it will be this excited condition that will ultimately lead to the sensation of light.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahamson, E. W. & Ostroy, S. E. (1967) The photochemical and macromolecular aspects of vision. Progr. Biophys. 17, 181–215.Google Scholar
  2. Abrahamson, E. W. & Wiesenweld, J. R. (1972), The structure, spectra, and reactivity of visual pigments. Hdb. Sensory Physiol. 7/1, 69–121.Google Scholar
  3. Adler, A. J. & Evans, C. D. (1985) Some functional characteristics of purified bovine interphotoreceptor retinol-binding protein. Invest. Ophthal. 26, 273–282.Google Scholar
  4. Adler, A. J. & Martin, K. J. (1982) Retinol binding proteins in bovine interphotoreceptor matrix. Biochem. Biophys. Res. Commun. 108, 1601.Google Scholar
  5. Allen, D. M. & McFarland, W. N. (1973) The effect of temperature on rhodopsin-porphyropsin ratios in a fish. Vision Res. 13, 1303–1309.Google Scholar
  6. Alvarez, R. A., Bridges, C. D. B. & Fong, S.-L. (1981) High-pressure liquid chromatography of fatty acid esters of retinol isomers. Invest. Ophthal. 20, 304–313.Google Scholar
  7. Amer, S. & Akhtar, M. (1972) The regeneration of rhodopsin from all-trans retinal: Solubilization of enzyme system involved in the completion of the visual cycle. Biochem. J. 128, 987–989.Google Scholar
  8. Amer, S. & Akhtar, M. (1973) Studies on the regeneration of rhodopsin from all-trans retinal in isolated rat retinae. Nature 245, 221–223.Google Scholar
  9. Anderson, D. H. & Fisher, S. K. (1976) The photoreceptors of diurnal squirrels; outer segment structure, disc shedding and protein renewal. J. Ultrastr. Res. 55, 119–141.Google Scholar
  10. Anderson, D. H., Fisher, S. K., Erickson, P. A. & Tabor, G. A. (1980) Rod and cone disc shedding in the rhesus monkey retina: a quantiative study. Exp. Eye Res. 30, 559–574.Google Scholar
  11. Azuma, K., Azuma, M. & Sickel, W. (1977) Regeneration of rhodopsin in frog rod outer segments. J. Physiol. 271, 747–759.Google Scholar
  12. Bairati, A. & Orzalesi, N. (1963) The ultrastructure of the pigment epithelium and of the photoreceptor-pigment epithelium junction. J. Ultrastr. Res. 9, 484–496.Google Scholar
  13. Basinger, S., Bok, D. & Hall, M. (1976) Rhodopsin in the rod outer segment plasma membrane. J. Cell Biol. 69, 29–42.Google Scholar
  14. Baumann, C. (1970) Regeneration of rhodopsin in the isolated retina of the frog (Rana esculenta). Vision Res. 10, 627–637.Google Scholar
  15. Beatty, D. D. (1975) Visual pigments of the American eel Anguilla rostrata. Vision Res. 15, 771–776.Google Scholar
  16. Bernstein, S. A., Breding, D. J. & Fisher, S. K. (1984) The influence of light on cone disk shedding in the lizard, Sceloporus occidentalis. J. Cell Biol. 99, 379–389.Google Scholar
  17. Besharse, J. C. & Pfenninger, K. H. (1980) Membrane assembly in retinal photoreceptors I. Freeze-fracture analysis of cytoplasmic vesicles in relationship to disc assembly. J. Cell Biol. 87, 451–463.Google Scholar
  18. Bibb, C. & Young, R. W. (1974) Renewal of glycerol in the visual cells and pigment epithelium of the frog retina. J. Cell Biol. 62, 378–389.Google Scholar
  19. Blasie, J. K. & Worthington, C. R. (1969) Planar liquid-like arrangement of photopigment molecule in frog retinal receptor disk membranes. J. Mol. Biol. 39, 417–439.Google Scholar
  20. Blazynski, C. & Ostroy, S. E. (1984) Pathways in the hydrolysis of vertebrate rhodopsin. Vision Res. 24, 459–470.Google Scholar
  21. Bok, D. (1985) Retinal photoreceptor-pigment epithelium interactions. Invest. Ophthal. 26, 1659–1694.Google Scholar
  22. Bok, D. & Hall, M. D. (1971) The role of the pigment epithelium in the etiology of inherited retinal dystrophy in the rat. J. Cell Biol. 49, 664–682.Google Scholar
  23. Bok, D. & Heller, J. (1976) Transport of retinol from the blood to the retina: an autoradiographic study of the pigment epithelial cell surface receptor for plasma retinol-binding protein. Exp. Eye Res. 22, 395–402.Google Scholar
  24. Bok, D., Ong, D. E. & Chytil, F. (1984) Immunocytochemical localization of cellular retinol binding protein in the rat retina. Invest. Ophthal. 25, 877–883.Google Scholar
  25. Bok, D. & Young, R. W. (1972) The renewal of diffusely distributed protein in the outer segments of rods and cones. Vision Res. 12, 161–168.Google Scholar
  26. Borggreven, J. M. P. M., Rotmans, J. P., Bonting, S. L. & Daemen, F. J. M. (1971) The role of phospholipids in cattle rhodopsin studied with phospholipase C. Arch. Biochem. Biophys. 145, 290–299.Google Scholar
  27. Bowmaker, J. K. & Martin, G. R. (1984) Colour vision in the penguin, Spheniscus humboldti: a microspectrofluorometric study. Vision Res. 24, 1702 (Abstr.).Google Scholar
  28. Bownds, D. (1967) Site of attachment of retinal in rhodopsin. Nature 216, 1178–1181.Google Scholar
  29. Bridges, C. D. B. (1961) Studies on the flash photolysis of visual pigments. Biochem. J. 79, 128–134.Google Scholar
  30. Bridges, C. D. B. (1964) The distribution of visual pigments in freshwater fishes. Abstr. Fourth Internat. Congr. Photobiol., Oxford, p. 53. Bucks: Beacon Press.Google Scholar
  31. Bridges, C. D. B. (1972) The rhodopsin-porphyropsin system. In: Handbook of Sensory Physiology. VII/1, pp. 417–486. Springer: Berlin.Google Scholar
  32. Bridges, C. D. B. (1976) Vitamin A and the role of the pigment epithelium during bleaching and regeneration of rhodopsin in the frog eye. Exp. Eye Res. 22, 435–455.Google Scholar
  33. Bridges, C. D. B., Alvarez, R. A., Fong, S.-L., Gonzalez-Fernandez, F., Lam, D. K. & Liou, G. I. (1984) Visual cycle in the mammalian eye. Retinoid binding protein and the distribution of 11-cis retinoids. Vision Res. 24, 1581–1594.Google Scholar
  34. Bunt-Milam, A. H. & Saari, J. C. (1983) Immunocytochemical localization of two retinoid-binding proteins in vertebrate retina. J. Cell Biol. 97, 703–712.Google Scholar
  35. Chader, G. J. & Wiggert, B. (1984) Interophotoreceptor retinoid-binding protein. Characteristics in bovine and monkey. Vision Res. 24, 1605–1614.Google Scholar
  36. Chader, G. J., Wiggert, B., Lai, Y.-L., Lee, L. & Fletcher, R. T. (1983) Interophotoreceptor retinol-binding protein: a possible role in retinoid transport in the retina. Progr. Ret. Res. 2, 163–189.Google Scholar
  37. Cohen, D. & Nir, I. (1983) Cytochemical evaluation of anionic sites on the surface of cultured pigment epithelium cells from normal and dystrophic RCS rats. Exp. Eye Res. 37, 575–582.Google Scholar
  38. Collins, F. D. & Morton, R. A. (1950) Studies on rhodopsin. I–III. Biochem. J. 47, 3–9, 10–17, 18–24.Google Scholar
  39. Crescitelli, F. (1985) Some properties of solubilized human rhodopsin. Exp. Eye Res. 40, 521–535.Google Scholar
  40. Crescitelli, F. & Dartnall, H. J. A. (1953) Human visual purple. Nature 172, 195–196.Google Scholar
  41. Daemen, F. J. M., Rotmans, J. P. & Bonting, S. L. (1974) On the rhodopsin cycle. Exp. Eye Res. 18, 97–103.Google Scholar
  42. Danielli, J. F. & Davson, H. (1935) A contribution to the theory of permeability of thin films. J. cell. comp. Physiol. 5, 495.Google Scholar
  43. Dartnall, H. J. A. (1957) The Visual Pigments. London: Methuen.Google Scholar
  44. Dartnall, H. J. A., Lander, M. R. & Munz, F. W. (1961) Periodic changes in the visual pigment of a fish. In Progress in Photobiology, pp. 203–213. Amsterdam, Elsevier.Google Scholar
  45. Dartnall, H. J. A. & Lythgoe, J. N. (1965) The spectral clustering of visual pigments. Vision Res. 5, 81–100.Google Scholar
  46. Davison, M. D. & Findlay, J. B. C. (1986) Modification of ovine opsin with photosensitive hydrophobic probe 1-azide-4-[125I] iodobenzene. Labelling of the chromophore-attachment domain. Biochem. J. 234, 413–420.Google Scholar
  47. DeFoe, D. M. & Bok, D. (1983) Rhodopsin chromophore exchanges among opsin molecules in the dark. Invest. Ophthal. 24, 1211–1226.Google Scholar
  48. DeGrip, W. J., Bonting, S. L. & Daeman, F. J. M. (1973) The binding site of retinaldehyde in cattle rhodopsin. Biochim. biophys. Acta 303, 189–193.Google Scholar
  49. DeGrip, W. J., Van de Laar, G. L. M., Daemen, F. J. M. & Bonting, S. L. (1973) Biochemical aspects of the visual process. XXIII. Biochim. biophys. Acta 325, 315–322.Google Scholar
  50. Denton, E. J. (1959) The contribution of the photosensitive and other molecules to the absorption of whole retina. Proc. Roy. Soc., B 150, 78–94.Google Scholar
  51. Denton, E. J. & Warren, F. J. (1956) Visual pigments of deep sea fish. Nature 178, 1059.Google Scholar
  52. Ditto, M. (1975) A difference between developing rods and cones in the formation of the outer segment membranes. Vision Res. 15, 535–536.Google Scholar
  53. Dowling, J. E. (1960) Chemistry of visual adaptation in the rat. Nature 188, 114–118.Google Scholar
  54. Dowling, J. E. & Hubbard, R. (1963) Effect of brilliant flashes on light and dark adaptation. Nature 199, 972–975.Google Scholar
  55. Fager, L. Y. & Fager, R. S. (1981) Chicken blue and chicken violet, short wavelength sensitive visual pigments. Vision Res. 21, 581–586.Google Scholar
  56. Fager, R. S., Sejnowski, P. & Abrahamson, E. W. (1972) Aqueous cyanohydridoborate reduction of the rhodopsin chromophore. Biochem. Biophys. Res. Comm. 47, 1244–1247.Google Scholar
  57. Frank, R. N. (1969) Photoproducts of rhodopsin bleaching in the isolated, perfused frog retina. Vision Res. 9, 1415–1433.Google Scholar
  58. Fukuda, M. N., Papermaster, D. S. & Hargrave, P. A. (1979) Rhodopsin carbohydrate. Structure of small oligosaccharides attached at two sites near the NH2 terminus. J. Biol. Chem. 254, 8201–8207.Google Scholar
  59. Gonzalez-Fernandez, F., Fong, S.-L., Liou, I. & Bridges, C. D. B. (1985) Intetstitial retinal-binding protein (IRBP) in the RCS rat: effect of dark-rearing. Invest. Ophthal. 26, 1381–1385.Google Scholar
  60. Hagins, W. A. (1956) Flash photolysis of rhodopsin in the retina. Nature 177, 989–990.Google Scholar
  61. Hargrave, P. A. et al. (1983) The structure of bovine rhodopsin. Biophys. Struct. Mech. 9, 235–241. (Quoted by Hargrave et al., 1984.)Google Scholar
  62. Hargrave, P. A., McDowell, J. H., Feldmann, R. J., Atkinson, P. H., Rao, J. K. M. & Argos, P. (1984) Rhodopsin’s protein and carbohydrate structure: selected aspects. Vision Res. 24, 1487–1499.Google Scholar
  63. Harosi, F. I. & MacNichol, E. F. (1974) Visual pigments of goldfish cones. Spectral properties and dichroism. J. gen. Physiol. 63, 279–304.Google Scholar
  64. Heller, J. (1968) Purification, molecular weight, and composition of bovine visual pigment. Biochem. 7, 2906–2913.Google Scholar
  65. Heller, J. (1975) Interactions of plasma retinol-binding protein with its receptor. J. Biol. Chem. 250, 3613–3619.Google Scholar
  66. Heller, J. & Bok, D. (1976) Transport of retinol from the blood to the retina: involvement of high molecular weight lipoproteins as intracellular carriers. Exp. Eye Res. 22, 403–410.Google Scholar
  67. Herman, K. G. & Steinberg, R. H. (1982) Phagosome movement and the diurnal pattern of phagocytosis in the tapetal retinal pigment epithelium of the opossum. Invest. Ophthal. 23, 277–290.Google Scholar
  68. Hogan, M. J. & Wood, I. (1974) Phagocytosis by pigment epitheium of human retinal cones. Nature 252, 305–307.Google Scholar
  69. Hollyfield, J. G., Fliesler, S. J., Rayborn, M. E., Fong, S. L., Landers, R. A. & Bridges, C. D. B. (1985) Synthesis and secretion of interstitial retinol-binding protein by the human retina. Invest. Ophthal. 26, 58–67.Google Scholar
  70. Huang, P. T., Spira, A. W. & Wyse, J. P. H. (1982) Phagocytosis in the fetal pigment epithelium: evidence for cyclic activity. Invest, Ophthal. 22, 428–438.Google Scholar
  71. Hubbard, R. & Colman, A. D. (1959) Vitamin A content of the frog eye during light and dark adaptation. Science 130, 977–978.Google Scholar
  72. Hubbard, R. & Kropf, A. (1959) Molecular aspects of visual excitation. Ann. N.Y. Acad. Sci. 81, 388–398.Google Scholar
  73. Hubbard, R. & Wald, G. (1952) Cis-trans isomers of vitamin A and retinene in the rhodopsin system. J. gen. Physiol. 36, 269–315.Google Scholar
  74. Jancsó, N. & Jancsó, H. (1936) Fluoreszenmikroskopische Beobachtung der reversiblen Vitamin-Bildung in der Netzhaut während des Sehaktes. Biochem. Z. 287, 289–290.Google Scholar
  75. Jan, L. Y. & Revel, J.-P. (1974) Ultrastructural localization of rhodopsin in the vertebrate retina. J. Cell Biol. 62, 257–263.Google Scholar
  76. Knowles, A. & Dartnall, H. J. A. (1977) The Photobiology of Vision. Vol. 2B, The Eye (Ed. Davson, H.). Academic Press, New York and London.Google Scholar
  77. Köttgen, E. & Abelsdorff, G. (1896) Absorption und Zersetzung des Sehpurpurs bei den Wirbeltieren. Z. Psychol. Physiol. Sinnesorg. 12, 161–184.Google Scholar
  78. Lai, Y.-L., Wiggert, B., Liu, Y. P. & Chader, G. J. (1982). Interphotoreceptor retinol-binding proteins: possible transport vehicles between compartments of the retina. Nature 298, 848.Google Scholar
  79. La Vail, M. M. (1976) Rod outer segment disc shedding in relation to cyclic lighting. Exp. Eye Res. 23, 277–280.Google Scholar
  80. Liang, C.-J., Yamashita, K., Muellenberg, C. G., S¢hichi, H. & Kobata, A. (1979) Structure of the carbohydrate moieties of bovine rhodopsin. J. Biol. Chem. 254, 6414–6418.Google Scholar
  81. Liebman, P. A. & Entine, G. (1968) Visual pigments of frog and tadpole (Rana pipiens). Vision Res. 8, 761–775.Google Scholar
  82. Liebman, P. A., Jagger, W. S., Kaplan, M. W. & Bargoot, F. G. (1974) Membrane structure changes in rod outer segments associated with rhodopsin bleaching. Nature 251, 31–36.Google Scholar
  83. Liou, G. I., Bridges, C. D. B., Fong, S.-L., Alvarez, R. A. & Gonzalez-Fernandez, F. (1982) Vitamin A transport between retina and pigment epithelium—an interstitial protein carrying endogenous retino (interstitial retinol-binding protein). Vision Res. 22, 1457–1467.Google Scholar
  84. Long, K. O., Fisher, S. K., Fariss, R. N. & Anderson, D. H. (1986) Disc shedding and autophagy in the cone-dominant ground squirrel retina. Exp. Eye Res. 43, 193–205.Google Scholar
  85. Lythgoe, J. N. (1979) The Ecology of Vision. Clarendon Press: Oxford.Google Scholar
  86. Lythgoe, J. N. (1984) Visual pigments and environmental light. Vision Res. 24, 1539–1550.Google Scholar
  87. Lythgoe, R. J. (1937) Absorption spectra of visual purple and visual yellow. J. Physiol. 89, 331–358.Google Scholar
  88. Lythgoe, R. J. & Quilliam, J. P. (1938) The relation of transient orange to visual purple and indicator yellow. J. Physiol. 94, 399–410.Google Scholar
  89. Maraini, G. & Gozzoli, F. (1975) Binding of retinol to isolated retinal pigment epithelium in the presence and absence of retinol-binding protein. Invest. Ophthal. 14, 785–787.Google Scholar
  90. Mathies, R., Oseroff, A. R. & Stryer, L. (1976) Rapid flow resonance Raman spectroscopy of photolabile molecules: rhodopsin and isorhodopsin. Proc. Nat. Acad. Sci. Wash. 73, 1–5.Google Scholar
  91. McFarland, W. N. & Munz, F. W. (1975) The evolution of photopic visual pigments in fishes. Vision Res. 15, 1071–1080.Google Scholar
  92. Muntz, W. R. A. & Mouat, G. S. V. (1984) Annual variations in the visual pigments of brown trout inhabiting lochs providing different light environments. Vision Res. 24, 1575–1580.Google Scholar
  93. Muntz, W. R. A. & Reuter, T. (1966) Visual pigments and spectral sensitivity in Rana temporaria and other European tadpoles. Vision Res. 6, 601–618.Google Scholar
  94. Munz, F. W. (1958) Photosensitive pigments from the retinae of certain deep-sea fishes. J. Physiol. 140, 220–235.Google Scholar
  95. Nathans, J. & Hogness, D. S. (1983) Isolation, sequence analysis and intron-exon arrangement of the gene encoding bovine rhodopsin. Cell 34, 807–814.Google Scholar
  96. Nilsson, S. E. G. (1964) Receptor cell outer segment development and ultra-structure of the disk membranes in the retina of the tadpole (Rana pipiens). J. Ultrastr. Res. 11, 581–620.Google Scholar
  97. Nir, I. & Papermaster, D. S. (1983) Differential distribution of opsin in the plasma membrane of frog photoreceptors: an immunocytochemical study. Invest. Ophthal. 24, 868.Google Scholar
  98. Ohtsu, K., Naito, K. & Wilt, F. H. (1966) Metabolic basis of visual pigment conversion in metamorphosing Rana catesbiana. Dev. Biol. 10, 216–232.Google Scholar
  99. Ovchinnikov, Y. A. et al. (1982) The complete amino acid sequence of visual rhodopsin. Biorg. Khim. 8, 1011–1014.Google Scholar
  100. Papermaster, D. S., Converse, C. A. & Siu, J. (1975) Membrane biosynthesis in the frog retina: opsin transport in the photoreceptor cell. Biochemistry 14, 1343–1352.Google Scholar
  101. Paulsen, R., Miller, J. A., Brodie, A. E. & Bownds, M. D. (1975) The decay of long-lived photoproducts in the isolated bullfrog rod outer segment: relationship to other dark reactions. Vision Res. 15, 1325–1332.Google Scholar
  102. Peters, K., Applebury, M. L. & Rentzepis, P. M. (1977) Primary photochemical event in vision: proton translocation. Proc. Nat. Acad. Sci. 74, 3119–3123.Google Scholar
  103. Peters, K.-R., Palade, G. E., Schneider, B. G. & Papermaster, D. S. (1983) Fine structure of a periciliary ridge complex of frog retinal rod cells revealed by ultrahigh resolution scanning electron microscopy. J. Cell Biol. 96, 265–276.Google Scholar
  104. Pfeffer, B., Wiggert, B., Lee, L., Zonnenberg, B., Newsome, D. & Chader, G. J. (1983) The presence of a soluble inter-photoreceptor retinoid-binding protein in the retinal inter-photoreceptor space. J. Cell Physiol. 117, 333.Google Scholar
  105. Poincelot, R. P., Millar, P. G., Kimbel, R. L. & Abrahamson, E. W. (1969) Lipid to protein chromophore transfer in the photolysis of visual pigments. Nature 221, 256–257.Google Scholar
  106. Poo, M. M. & Cone, R. A. (1973) Lateral diffusion of rhodopsin in Necturus rods. Exp. Eye Res. 17, 503–510.Google Scholar
  107. Pugh, E. N. (1975) Rhodopsin flash photolysis in man. J. Physiol. 248, 393–412.Google Scholar
  108. Richardson, T. M. (1969) Cytoplasmic and ciliary connections between the inner and outer segments of mammalian visual receptors. Vision Res. 9, 727–731.Google Scholar
  109. Ripps, H., Mehaffey, L. & Siegel, I. M. (1981) Rhodopsin kinetics in the cat retina. J. Gen. Physiol. 77, 317–334.Google Scholar
  110. Ripps, H. & Weale, R. A. (1969) Flash bleaching of rhodopsin in the human retina. J. Physiol. 200, 151–159.Google Scholar
  111. Rotmans, J. P., Daemen, F. J. M. & Bonting, S. L. (1974) Biochemical aspects of the visual process. XXVI. Binding site and migration of retinaldehyde during rhodopsin photolysis. Biochim. biophys. Acta 357, 151–158.Google Scholar
  112. Saari, J. C., Bunt-Milam, A. H., Bredberg, L. & Garwin, G. G. (1984) Properties and immunocytochemical localization of three retinoid-binding proteins from bovine retina. Vision Res. 24, 1595–1603.Google Scholar
  113. Schwanzara, S. A. (1967) The visual pigments of freshwater fishes. Vision Res. 7, 121–148.Google Scholar
  114. Spitznas, M. & Hogan, M. J. (1970) Outer segments of photoreceptors and the retinal pigment epithelium. Arch. Ophthal. 84, 810–819.Google Scholar
  115. Steinberg, R. H., Wood, I. & Hogan, M. J. (1977) Pigment epithelial ensheathment and phagocytosis of extrafoveal cones in human retina. Phil. Trans. 277, 459–476.Google Scholar
  116. Tabor, G. A., Fisher, S. K. & Anderson, D. H. (1979) Evidence for a circadian rhythm of disc shedding in light-entrained gray squirrels. ARVO Suppl. 18, 81.Google Scholar
  117. Tabor, G. A., Fisher, S. K. & Anderson, D. H. (1980) Rod and cone disc shedding in light-entrained tree squirrels. Exp. Eye Res. 30, 545–557.Google Scholar
  118. Tamai, M., Teirstein, P., Goldman, A., O’Brien, P. & Chader, G. (1978) The pineal gland does not control rod outer segment shedding and phagocytosis in the rat retina and pigment epithelium. Invest. Ophthal. 17, 558–562.Google Scholar
  119. Thompson, P. & Findlay, J. B. (1984) Phosphorylation of ovine rhodopsin. Identification of the phosphorylated sites. Biochem. J. 220, 773–780.Google Scholar
  120. Trayhurn, P. & Habgood, J. O. (1975) The effect of trypsin on the retinal rod outer segments: trypsin digestion as a means of isolating viable discs. Exp. Eye Res. 20, 479–487.Google Scholar
  121. Tsinn, A. T. C. & Beatty, D. D. (1977) Visual pigment changes in rainbow trout in response to temperature. Science 195, 1358–1360.Google Scholar
  122. Tsinn, A. T. C. & Beattey, D. D. (1978) Goldfish rhodopsin: P4991. Vision Res. 18, 1453–1455.Google Scholar
  123. Wald, G. (1935) Carotenoids and the visual cycle. J. gen. Physiol. 19, 351–371.Google Scholar
  124. Wald, G. (1939) The porphyropsin visual system. J. gen. Physiol. 22, 775–794.Google Scholar
  125. Wald, G. (1946) The chemical evolution of vision. Harvey Lectures 41, 148–152.Google Scholar
  126. Wald, G. (1960) The distribution and evolution of visual systems. In Comparative Biochemistry, vol. I. New York: Academic Press.Google Scholar
  127. Wald, G. & Brown, P. K. (1952) The role of sulphydryl groups in the bleaching and synthesis of rhodopsin. J. gen. Physiol. 35, 797–821.Google Scholar
  128. Wiggert, B. O. & Chader, G.J. (1975) A receptor for retinol in the developing retina and pigment epithelium. Exp. Eye Res. 21, 143–151.Google Scholar
  129. Wiggert, B., Lee, L., O’Brien, P. J. & Chader, G. J. (1984) Synthesis of interphotoreceptor retinol-binding protein (IRBP) by monkey retina in organ culture: effect of monensin. Biochem. Biophys. Res. Comm. 118, 789–796.Google Scholar
  130. Wiggert, B., Lee, L., Rodriguez, M., Hess, H., Redmond, T.M. & Chader, G. J. (1986) Immunochemical distribution of inter-photoreceptor retinoid—bindging protein in selected species. Invest. Ophthal., 27, 1041–1049.Google Scholar
  131. Wilt, F. H. (1959) The differentiation of visual pigments in metamorphosing larvae of Rana catesbiana. Dev. Biol. 1, 199–233.Google Scholar
  132. Wong, J. K. & Ostroy, S. E. (1973) Hydrogen ion changes of rhodopsin. I. Proton uptake during the metarhodopsin I478 metarhodopsin II308 reactions. Arch. Biochem. Biophys. 154, 1–7.Google Scholar
  133. Worthington, C. R. (1973) X-ray analysis of retinal photoreceptor structure. Exp. Eye Res. 17, 487–501.Google Scholar
  134. Wu, C.-W. & Stryer, L. (1972) Proximity relationships in rhodopsin. Proc. Nat. Acad. Sci. Wash. 69, 1104–1108.Google Scholar
  135. Yoshizawa, T. (1972) The behaviour of visual pigments at low temperatures. Hdb. Sensory Physiol. 7(1), 146–179.Google Scholar
  136. Yoshizawa, T., Schishida, Y. & Matsuoka, S. (1984) Primary intermediates of rhodopsin studied by low temperature spectrophotometry and laser photolysis. Vision Res. 24, 1455–1463.Google Scholar
  137. Young, R. W. (1971) Shedding of discs from rod outer segments in the rhesus monkey. J. Ultrastr. Res. 34, 190–203.Google Scholar
  138. Young, R. W. (1972) The daily rhythm of shedding and degradation of cone outer segment membranes in the lizard retina. J. Ultrastr. Res. 61, 172–185.Google Scholar
  139. Young, R. W. (1976) Visual cells and the concept of renewal. Invest. Ophthal. 15, 700–725.Google Scholar
  140. Zimmerman, W. F. (1974) The distributions and proportions of vitamin A compounds during the visual cycle in the rat. Vision Res. 14, 795–802.Google Scholar
  141. Zimmerman, W. F., Lion, R., Daemen, F. J. M., & Bonting, S. L. (1975) Distribution of specific retinol dehydrogenase activities in sub-cellular fractions of bovine retina and pigment epithelium. Exp. Eye Res. 21, 325–332.Google Scholar
  142. Zorn, M. (1974) The effect of blocked sulfhydryl groups on the regenerability of bleached rhodopsin. Exp. Eye. Res. 19, 215–221.Google Scholar
  143. Zorn, M. & Futterman, S. (1971) Properties of rhodopsin dependent upon associated phospholipid. J. biol. Chem. 246, 881–886.Google Scholar

Copyright information

© Hugh Davson 1990

Authors and Affiliations

  • Hugh Davson
    • 1
    • 2
    • 3
  1. 1.St. Thomas’s HospitalSouthampton University Medical SchoolsLondonUK
  2. 2.King’s CollegeLondonUK
  3. 3.University CollegeLondonUK

Personalised recommendations