Skip to main content

Abstract

The cornea is illustrated by the meridional section in Fig. 3.1; the great bulk (up to 90% of its thickness) is made up of the stroma which is bounded externally by Bowman’s membrane and the epithelium, and internally by Descemet’s membrane and the endothelium. The total thickness in man is just over 0.5 mm in the central region; towards the periphery it becomes some 50% thicker.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen, E. I., Fischbarg, J. & Spector, A. (1974) Disulfide stimulation of fluid transport and effect on ATP level in rabbit corneal endothelium. Exp. Eye Res. 19, 1–10.

    Google Scholar 

  • Antoine, M. E., Edelhauser, H. F. & O’Brien, W. J. (1984) Pharmacokinetics of topical ocular phenylephrine HCl. Invest. Ophthal. 25, 48–54.

    Google Scholar 

  • Araie, M. & Maurice, D. M. (1983) A reevaluation of corneal endothelial permeability to fluorescein. Exp. Eye Res. 41, 383–390.

    Google Scholar 

  • Bahn, C. F. et al. (1986) Postnatal development of corneal endothelium. Invest. Ophthal. 27, 44–51.

    Google Scholar 

  • Barfort, P. & Maurice, D. (1974) Electrical potential and fluid transport across the corneal endothelium. Exp. Eye Res. 19, 11–19.

    Google Scholar 

  • Barr, R. E., Hennessey, M. & Murphy, V. G. (1977) Diffusion of oxygen at the endothelial surface of the rabbit cornea. J. Physiol. 270, 1–8.

    Google Scholar 

  • Barr, R. E. & Roetman, E. L. (1974) Oxygen gradients in the anterior chamber of anesthetized rabbits. Invest. Ophthal. 13, 386–389.

    Google Scholar 

  • Barr, R. E. & Silver, I. A. (1973) Effects of corneal environment on oxygen tension in the anterior chambers of rabbits. Invest. Ophthal. 12, 140–144.

    Google Scholar 

  • Baum, J. P., Maurice, D. M. & McCarey, B. E. (1984) The active and passive transport of water across the corneal endothelium. Exp. Eye Res. 39, 335–342.

    Google Scholar 

  • Belmonte, C. & Giraldez, F. (1981) Responses of cat corneal sensory receptors to mechanical and thermal stimulation. J. Physiol. 321, 355–368.

    Google Scholar 

  • Benedek, G. B. (1971) Theory of transparency of the eye. Appl. Optics 10, 459–473.

    Google Scholar 

  • Berggren, L. & Lempberg, R. (1973) Neovascularization in the rabbit cornea after intracorneal injections of cartilage extracts. Exp. Eye Res. 17, 261–273.

    Google Scholar 

  • Bessou, P. & Perl, E. R. (1969) Response of cutaneous sensory units with unmyelinated fibres to noxious stimuli. J. Neurophysiol. 32, 1025–1043.

    Google Scholar 

  • Beuerman, R. W. & Tanelian, D. L. (1979) Corneal pain evoked by thermal stimulation. Pain 7, 1–14.

    Google Scholar 

  • Bito, L. Z., Roberts, J. C. & Saraf, S. (1973) Maintenance, of normal corneal thickness in the cold in vivo (hibernation) as opposed to in vitro. J. Physiol. 231, 71–86.

    Google Scholar 

  • Bito, L. Z. & Saraf, S. (1973) The effects of cold on corneal thickness and on aqueous humor and blood composition of Rana pipiens. Exp. Eye Res. 16, 315–325.

    Google Scholar 

  • Birk, D. E., Fitch, J. M. & Linsenmeyer, T. F. (1986) Organization of collagen types I and V in the embryonic chicken cornea. Invest. Ophthal., 27, 1470–1477.

    Google Scholar 

  • Blümcke, S. & Morgenroth, K. (1967) The stereo ultrastructure of the external and internal surface of the cornea. J. Ultrastr. Res. 18, 502–518.

    Google Scholar 

  • Boerscheeding, M. S. et al. (1975) Proteoglycans and collagen fibre organization in human corneoscleral tissue. Exp. Eye Res. 21, 59–70.

    Google Scholar 

  • Breen, M., Johnson, R. L., Sittig, R. A., Weinstein, H. G. & Veis, A. (1972) The acidic glycosaminoglycans in human fetal development and adult cornea, sclera and skin. Conn. Tissue Res. 1, 291–303.

    Google Scholar 

  • Brown, S. I. (1973) Dry spots and corneal erosions. Int. Ophthal. Clinics 13, 169–185.

    Google Scholar 

  • Buck, R. C. (1982) Hemidesmosomes of normal and regenerating mouse corneal epithelium. Virch. Arch. 41, 1–16.

    Google Scholar 

  • Burgess, P. R. & Perl, E. R. (1973) Cutaneous mechanoreceptors and nociceptors. In Handbook of Sensory Physiology. Ed. Iggo, A., Vol. 2, pp. 29–78. Berlin: Springer.

    Google Scholar 

  • Campbell, F. W. & Michaelson, I. C. (1949) Blood-vessel formation in the cornea. Br. J. Ophthal. 33, 248–255.

    Google Scholar 

  • Candia, O. A. (1973) Short-circuit current related to active transport of chloride in frog cornea: effects of furosemide and ethacrynic acid. Biochim. biophys. Acta 298, 1011–1014.

    Google Scholar 

  • Candia, O. A. & Askew, W. A. (1968) Active sodium transport in the isolated bullfrog cornea. Biochim. biophys. Acta 163, 262–265.

    Google Scholar 

  • Candia, O. A. & Neufeld, A. H. (1978) Topical epinephrine causes a decrease in density of β-adrenergic receptors and catecholamine-stimulated chloride transport in the rabbit cornea. Biochim. biophys. Acta 543, 403–408.

    Google Scholar 

  • Coakes, R. L. & Brubaker, R. F. (1979) Method of measuring aqueous humor flow and corneal endothelial permeability using a ftuorophotometry nomogram.

    Google Scholar 

  • Cogan, D. G. & Hirsch, E. D. (1944) The cornea. VII. Permeability to weak electrolytes. Arch. Ophthal., N.Y. 32, 276–282.

    Google Scholar 

  • Cogan, D. G. & Kinsey, V. E. (1942) Transfer of water and sodium by osmosis and diffusion through the excised cornea. Arch. Ophthal., N.Y. 27, 466–476.

    Google Scholar 

  • Cohen, S. (1962) Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eye-lid opening in the new-born animal. J. biol. Chem. 237, 1555–1562.

    Google Scholar 

  • Coulombre, A. J. & Coulombre, J. E. (1961) The development of the structural and optical properties of the word. In: The Structure of the Eye. Ed. G. K. Smelser. Academic Press: N.Y. and London, pp. 405–420.

    Google Scholar 

  • Cox, J. L., Farrell, R. A., Hart, R. W. & Langham, M. E. (1970) J. Physiol. 210, 601–616.

    Google Scholar 

  • Crosson, C. E., Klyce, D. & Beuerman, R. W. (1986) Epithelial wound closure in the rabbit cornea. Invest. Ophthal. 27, 464–473.

    Google Scholar 

  • Daniele, S., Frati, L., Fiore, C. & Santoni, G. (1979) The effect of epidermal growth factor (EGF) on the corneal epithelium in humans. v. Graefes Arch. Ophthal. 210, 159–165.

    Google Scholar 

  • Davson, H. (1949) Some considerations on the salt content of fresh and old ox corneae. Br. J. Ophthal. 33, 175–182.

    Google Scholar 

  • Davson, H. (1955) The hydration of the cornea. Biochem. J. 59, 24–28.

    Google Scholar 

  • Diamond, J. M. & Bossert, W. H. (1967) Standing gradient osmotic flow. A mechanism for coupling of water and solute transport in epithelia. J. Gen. Physiol. 5, 2061–2083.

    Google Scholar 

  • Dieske, J. D. & Gipson, I. K. (1986) Protein synthesis during corneal epithelial wound healing. Invest. Ophthal. 27, 1–7.

    Google Scholar 

  • Dikstein, S. & Maurice, D. (1972) The metabolic basis to the fluid pump in the cornea. J. Physiol. 221, 29–41.

    Google Scholar 

  • Doane, M. G. & Dohlman, C. H. (1970) Physiological response of the cornea to an artificial epithelium Exp. Eye Res., 9, 158–164.

    Google Scholar 

  • Dodson, J. W. & Hay, E. D. (1971) Secretion of collagenous stroma by isolated epithelium grown in vitro. Exp. Cell Res. 65, 215–220.

    Google Scholar 

  • Dodson, J. W. & Hay, E. D. (1974) Secretion of collagen by corneal epithelium. II. Effect of the underlying substratum on secretion and polymerization of epithelial products. J. Exp. Zool., 189, 51–72.

    Google Scholar 

  • Dohlman, C. H. & Balazs, E. A. (1955) Chemical studies on Descemet’s membrane of the bovine cornea. Arch. Biochem. Biophys. 57, 445–457.

    Google Scholar 

  • Donn, A., Maurice, D. M. & Mills, N. L. (1959) The active transport of sodium across the epithelium. Arch. Ophthal., N.Y. 62, 748–757.

    Google Scholar 

  • Donn, A., Miller, S. & Mallett, N. (1963) Water permeability of the living cornea. Arch. Ophthal., Chicago 70, 515–521.

    Google Scholar 

  • Ehinger, B. (1966) Adrenergic nerves to the eye and to related structures in man and in the cynomolgus monkey (Macaca irus). Invest Ophthal. 5, 42–52.

    Google Scholar 

  • Eliason, J. A. (1978) Leukocytes and experimental corneal vascularization. Invest. Ophthal. 17, 1087–1095.

    Google Scholar 

  • Eliason, J. A. (1985) Angiogenic activity of the corneal epithelium. Exp. Eye Res. 41, 721–732.

    Google Scholar 

  • Farrell, R. A., McCally, R. L. & Tatham, P. E. R. (1973) Wavelength dependencies of light scattering in normal and cold swollen rabbit corneas and their structural implications. J. Physiol. 233, 589–612.

    Google Scholar 

  • Fatt, I. & Bieber, M. T. (1968) The steady-state distribution of oxygen and carbon dioxide in the in vivo cornea. I. Exp. Eye Res. 7, 103–112.

    Google Scholar 

  • Fatt, I. & Hedbys, B. O. (1970) Flow conductivity of human corneal stroma. Exp. Eye Res. 10, 237–242.

    Google Scholar 

  • Fischbarg, J. (1972) Potential difference and fluid transport across rabbit corneal endothelium. Biochim. biophys. Acta 288, 362–366.

    Google Scholar 

  • Fischbarg, J. (1973) Active and passive properties of the rabbit corneal endothelium. Exp. Eye Res. 15, 615–638.

    Google Scholar 

  • Fischbarg, J. & Lim, J. J. (1974) Role of cations, anions and carbonic anhydrase in fluid transport across rabbit corneal endothelium. J. Physiol. 241, 647–675.

    Google Scholar 

  • Fischbarg, J. & Lim, J. J. (1984) Fluid and electrolyte transport across corneal endothelium. Curr. Topics Eye Res. 4, 201–223.

    Google Scholar 

  • Fischbarg, J. & Montoreano, R. (1982) Osmotic permeability of corneal endothelial cell membrane and endothelial and epithelial layers. ARVO Suppl. 32, 102.

    Google Scholar 

  • Fischer, F. H., Schmitz, L., Hoff, W., Schartl, S., Liege, O. & Wiederholt, M. (1978) Sodium and chloride transport in the isolated human cornea. Pflüg. Arch. ges. Physiol., 373, 179–188.

    Google Scholar 

  • François, J., Rabaey, M. & Vandermeersche, G. (1954) Etude de la cornée et de la sclérotique. Ophthalmologica, Basel 127, 74–85.

    Google Scholar 

  • Frati, L., Daniele, S., Delogu, A. & Covelli, I. (1972) Selective binding of the epidermal growth factor and its specific effects on the epithelial cells of the cornea. Exp. Eye Res. 14, 135–141.

    Google Scholar 

  • Freeman, R. D. (1972) Oxygen consumption by the component layers of the cornea. J. Physiol. 225, 15–32.

    Google Scholar 

  • Fromer, C. H. & Klintworth, G. K. (1975) An evaluation of the role of leukocytes in the pathogenesis of experimentally induced corneal vascularization. II. Amer. J. Path. 81, 531–544.

    Google Scholar 

  • Fujikawa, L. S., Foster, C. S., Harrist, T. J., Lanigan, J. M. & Colvin, R. B. (1981) Fibronectin in healing rabbit corneal wounds. Lab. Invest. 45, 120–129.

    Google Scholar 

  • Geroski, D. H. & Edelhauser, H. F. (1984) The quantitation of Ns/K ATPase pump sites in the rabbit corneal endothelium. Invest. Ophthal., 25, 1056–1060.

    Google Scholar 

  • Giardini, A. & Roberts, J. R. E. (1950) Concentration of glucose and total chloride in tears. Br. J. Ophthal. 34, 737–743.

    Google Scholar 

  • Gipson, I. K. & Anderson, R. A. (1977) Actin filaments in normal and migrating corneal epithelial cells. Invest. Ophthal., 16, 161–166.

    Google Scholar 

  • Gipson, I. K. & Anderson, R. A. (1980) Effect of lectins on migration of the corneal epithelium. Invest. Ophthal. 19, 341–349.

    Google Scholar 

  • Gipson, I. K. & Keezer, L. (1982) Effects of cytochalasins and colchicine on the ultrastructure of migrating corneal epithelium. Invest. Ophthal. 22, 643–650.

    Google Scholar 

  • Gipson, I. K. & Kiorpes, T. C. (1982) Epithelial sheet movement: protein and glycoprotein synthesis. Dev. Biol. 92, 259–262.

    Google Scholar 

  • Gipson, I. K., Kiorpes, T. C. & Brennan, S. I. (1984) Epithelial sheet movement: effects of tunicamycin on migration and glycoprotein synthesis. Dev. Biol. 101, 212–220.

    Google Scholar 

  • Gipson, I. K., Westcote, M. J. & Brooksby, N. G. (1982) Effects of cytochalasins B and D and colchicine on migration of the corneal epithelium. Invest. Ophthal. 22, 633–642.

    Google Scholar 

  • Giraldez, F., Geijo, E. & Behnonte, C. (1979) Response characteristics of corneal sensory fibres to mechanical and thermal stimulation. Brain Res. 177, 571–576.

    Google Scholar 

  • Gospodarowicz, D., Greenburg, G., Foidart, J. M. & Savion, N. (1981) The production and localization of laminin in cultured vascular and corneal endothelial cells. J. Cell Physiol. 107, 171–183.

    Google Scholar 

  • Gospodarowicz, D. & Ill, C. (1980) The extracellular matrix and the control of proliferation of corneal endothelial and lens epithelial cells. Exp. Eye Res. 31, 181–199.

    Google Scholar 

  • Gospodarowicz, D., Mescher, A. L. & Birdwell, C. R. (1977) Stimulation of corneal endothelial cell proliferation in vitro by fibroblast and epidermal growth factors. Exp. Eye Res.

    Google Scholar 

  • Green, K. & Otori, T. (1970) Studies on corneal physiology in vitro. Exp. Eye Res. 9, 268–280.

    Google Scholar 

  • Green, K., Simon, S., Kelly, G. M. & Bowman, K. A. (1981) Effects of [Na+], [CI], carbonic anhydrase and intracellular pH on corneal endothelial bicarbonate transport. Invest. Ophthal. 21, 586–591.

    Google Scholar 

  • Hale, P. N. & Maurice, D. M. (1969) Sugar transport across the corneal endothelium. Exp. Eye Res. 8, 205–215.

    Google Scholar 

  • Harris, J. E. & Nordquist, L. T. (1955) The hydration of the cornea. I. Transport of water from the cornea. Am. J. Ophthal. 40, 100–110.

    Google Scholar 

  • Harris, T. M., Berry, E. R., Pakurar, A. S. & Sheppard, L. B. (1985) Biochemical transformation of bulbar conjunctiva into corneal epithelium: an electrophoretic analysis. Exp. Eye Res., 41, 597–605.

    Google Scholar 

  • Hart, R. W. & Farréll, R. A. (1969) Light scattering in the cornea. J. opt. Soc. Amer. 59, 766–774.

    Google Scholar 

  • Hay, E. D., Linsenmeyer, T. F., Trelstad, R. L. & Von der Mark, K. (1979) Origin and distribution of collagens in the developing avian cornea. Curr. Topics Eye Res. 1, 1–35.

    Google Scholar 

  • Hay, E. D. & Revel, J. P. (1969) Fine structure of the developing avian cornea. Monogr. Dev. Biol., 1, 1–144.

    Google Scholar 

  • Hirsch, M., Renard, G., Faure, J.-P. & Pouliquen, Y. (1976) Formation of intracellular spaces and junctions in regenerating rabbit corneal endothelium. Exp. Eye Res. 23, 385–397.

    Google Scholar 

  • Hirsch, M., Renard, G., Faure, J.-P. & Pouliquen, Y. (1977) Study of the ultrastructure of the rabbit corneal endothelium by the freeze-fracture technique: apical and lateral junctions. Exp. Eye Res. 25, 277–288.

    Google Scholar 

  • Hodson, S. (1971) Evidence for a bicarbonate-dependent sodium pump in corneal endothelium. Exp. Eye Res. 11, 20–29.

    Google Scholar 

  • Hodson, S. (1974) The regulation of corneal hydration by a salt pump requiring the presence of sodium and bicarbonate ions. J. Physiol. 236, 271–302.

    Google Scholar 

  • Hodson, S. (1975) The regulation of corneal hydration to maintain high transparency in fluctuating ambient temperatures. Exp. Eye Res. 20, 375–381.

    Google Scholar 

  • Hodson, S. A. & Lawton, D. M. (1987) The apparent reflexion coefficients of the leaky corneal endothelium to sodium chloride is about one in the rabbit. J. Physiol. 385, 97–106.

    Google Scholar 

  • Hodson, S., Miller, F. & Riley, M. (1977) The electrogenic pump of rabbit corneal endothelium. Exp. Eye Res. 24, 249–253.

    Google Scholar 

  • Hodson, S. & Wigham, C. (1983) The permeability of rabbit and human corneal endothelium. J. Physiol. 342, 409–419.

    Google Scholar 

  • Holden, B. A., Sweeney, D. F. & Sanderson, G. (1984) The minimum precorneal oxygen tension to avoid corneal edema. Invest. Ophthal. 25, 476–480.

    Google Scholar 

  • Hull, D. S., Green, K., Boyd, M. & Wynn, H. R. (1977) Corneal endothelium bicarbonate transport and the effect of carbonic anhydrase inhibitors on endothelial permeability and fluxes and corneal thickness. Invest. Ophthal. 16, 883–892.

    Google Scholar 

  • Ikebe, H., Takamatsu, T., Itoi, M. & Fujita, S. (1986) Age-dependent changes in nuclear DNA content and cell size of presumably normal human corneal endothelium. Exp. Eye Res., 43, 251–258.

    Google Scholar 

  • Jakus, M. (1946) The fine structure of Descemet’s membrane. J. Biophys. biochem. Cytol. 2, Suppl., 243–252.

    Google Scholar 

  • Jakus, M. (1961) The fine structure of the human cornea. In Structure of the Eye, ed. Smelser, pp. 343–366. New York: Academic Press.

    Google Scholar 

  • Jentsch, T. J., Keller, S. R., Koch, M. & Wiederholt, M. (1984) Evidence for coupled transport of bicarbonate and sodium in cultured bovine corneal endothelial cells. J. Membrane Biol. 81, 189–204.

    Google Scholar 

  • Jones, R. F. & Maurice, D. M. (1966) New methods of measuring the rate of aqueous flow in man with fluorescein. Exp. Eye Res. 5, 208–220.

    Google Scholar 

  • Jumblatt, M. W. & Neufeld, A. H. (1986) A tissue culture assay of corneal epithelial wound closure. Invest. Ophthal. 27, 8–13.

    Google Scholar 

  • Kaufman, H. E., Capella, J. A. & Robbin, J. E. (1966) The human corneal endothelium. Amer. J. Ophthal. 61, 835–841.

    Google Scholar 

  • Kay, E.-D., P., Nimni, M. E. & Smith, R. E. (1984) Modulation of endothelial cell morphology and collagen synthesis by polymorphonuclear leukocytes. Invest. Ophthal. 25, 502–512.

    Google Scholar 

  • Kaye, G. I., Sibley, R. C. & Hoefle, F. B. (1973) Recent studies on the nature of and function of the corneal endothelial barrier. Exp. Eye Res. 15, 585–613.

    Google Scholar 

  • Kayes, J. & Holmberg, A. (1960) The fine structure of Bowman’s layer and the basement membrane of the corneal epithelium. Am. J. Ophthal. 50, 1013–1021.

    Google Scholar 

  • Keeley, F. W., Morin, J. D. & Vesely, S. (1984) Characterization of collagen from normal human sclera. Exp. Eye Res. 39, 533–542.

    Google Scholar 

  • Kelly, D. E. (1966) Fine structure of desmosomes, hemidesmosomes, and an adepidermal globular layer in developing newt epidermis. J. Cell Biol. 28, 51–72.

    Google Scholar 

  • Kelly, G. & Green, K. (1980) Influence of bicarbonate and CO2 on rabbit corneal transendothelial bicarbonate fluxes. Exp. Eye Res. 30, 641–648.

    Google Scholar 

  • Kenney, M. C., Benya, P. D., Nimms, M. E. & Smith, R. E. (1981) Stability of the collagen phenotype and decreased collagen production in serial subcultures of rabbit corneal endothelial cells. Exp. Eye Res., 33, 131–140.

    Google Scholar 

  • Kenshalo, D. R. (1960) Comparison of thermal sensitivity of the forehead, lip, conjunctiva and cornea. J. app. Physiol. 15, 987–991.

    Google Scholar 

  • Kenyon, K. R., Fogle, J. A., Stone, D. L. & Stark, W. J. (1977) Regeneration of corneal epithelial basement membrane following thermal cauterization. Invest. Ophthal. 16, 292–301.

    Google Scholar 

  • Khodadoust, A. A. & Green, K. (1976) Physiological function of regenerating endothelium. Invest. Ophthal. 15, 96–101.

    Google Scholar 

  • Khodadoust, A. A., Silverstein, A. M., Kenyon, K. R. & Dowling, J. E. (1968) Adhesion of regenerating corneal epithelium. The role of basement membrane. Amer. J. Ophthal. 65, 339–348.

    Google Scholar 

  • Kim, J. H., Green, K., Martinez, M. & Paton, D. (1971) Solute permeability of the corneal endothelium and Descemet’s membrane. Exp. Eye Res. 12, 231–238.

    Google Scholar 

  • Klyce, S. D. (1972) Electrical profiles in the corneal epithelium. J. Physiol. 226, 407–429.

    Google Scholar 

  • Klyce, S. D. (1975) Transport of Na, Cl, and water by the rabbit corneal epithelium at resting potential. Amer. J. Physiol. 228, 1446–1452.

    Google Scholar 

  • Klyce, S. D., Neufeld, A. H. & Zadunaisky, J. A. (1973) The activation of chloride transport by epinephrine and Db cyclic AMP in the cornea of the rabbit. Invest. Ophthal. 12, 127–139.

    Google Scholar 

  • Klyce, S. D. & Russell, S. R. (1979) Numerical solution of coupled transport equations applied to corneal hydration dynamics. J. Physiol. 292, 107–134.

    Google Scholar 

  • Kreutziger, G. O. (1976) Lateral membrane morphology and gap junction structure in rabbit corneal endothelium. Exp. Eye Res. 23, 285–293.

    Google Scholar 

  • Kuwabara, T., Perkins, D. G. & Cogan, D. G. (1976) Sliding of the epithelium in experimental corneal wounds. Invest. Ophthal. 15, 4–14.

    Google Scholar 

  • Labermeier, U. & Kenney, M. C. (1983) The presence of EC collagen and Type IV collagen in bovine Descemet’s membrane. Biochem. Biophys. Res. Comm 116, 619–620.

    Google Scholar 

  • Laing, R. A., Sandstrom, M. A., Berrospi, A. R. & Leibowitz, H. M. (1976) Changes in the corneal endothelium as a function of age. Exp. Eye Res., 22, 587–594.

    Google Scholar 

  • Landshman, N., Belkin, M., Ben-Hanan, I., Ben-Chaim, O., Assia, E. & Savion, N. (1987) Regeneration of cat corneal endothelium induced in vivo by fibroblast growth factor. Exp. Eye Res. 45, 805–811.

    Google Scholar 

  • Langham, M. E. (1952) Utilization of oxygen by the component layers of the living cornea. J. Physiol. 117, 461–470.

    Google Scholar 

  • Langham, M. E. (1953) Observations on the growth of blood vessels into the cornea. Brit. J. Ophthal., 37, 210–222.

    Google Scholar 

  • Laties, A. & Jacobowitz, D. (1964) A histochemical study of the adrenergic and cholinergic innervation of the anterior segment of the rabbit eye. Invest. Ophthal. 3, 592–600.

    Google Scholar 

  • Lee, R. I. & Davison, P. F. (1984) The collagens of developing bovine cornea. Exp. Eye Res. 39, 639–652.

    Google Scholar 

  • Lele, P. P. & Weddell, G. (1956). The relationship between neurohistology and corneal sensitivity. Brain 79, 119–154.

    Google Scholar 

  • Lele, P. P. & Weddell, G. (1959) Sensory nerves of the cornea and cutaneous sensibility. Exp. Neurol. 1, 334–359.

    Google Scholar 

  • Leuenberger, P. M. (1973) Lanthanum hydroxide tracer studies on rat corneal endothelium. Exp. Eye Res. 15, 85–91.

    Google Scholar 

  • Levy, G. (1964) Relationship between elimination rate of drugs and rate of decline in their pharmacologic effects. T. Pharmaceut. Sci., 53, 342–343.

    Google Scholar 

  • Leyns, W. F., Heringa, C. & Weidinger, A. (1940) Water binding capacity of the cornea. Acta brev. Nederland. Physiol. 10, 25–26.

    Google Scholar 

  • Lim, J. J. & Ussing, H. H. (1982) Analysis of presteady-state Na+ fluxes across the rabbit corneal endothelium. J. Membrane Biol. 65, 197–204.

    Google Scholar 

  • Linsenmeyer, T. F., Fitch, J. M. & Mayne, R. (1984) Extracellular matrices in the developing avian eye: type V collagen in corneal and neocorneal tissues. Invest. Ophthal. 25, 41–47

    Google Scholar 

  • Linsenmeier, T. F., Smith, G. N. & Hay, E. D. (1977) Synthesis of two collagen types by embryonic chick corneal epithelium in vitro. Proc. Nat. Acad. Sci., 74, 39–43.

    Google Scholar 

  • Liu, S. H., Tagawa, Y., Prendergast, R. A., Franklin, R. M. & Silverstein, A. M. (1981) Secretory component of IgA: a marker for differentiation of ocular epithelium. Invest. Ophthal. 20, 100–109.

    Google Scholar 

  • Maren, T. H., Jankowska, L., Sanyal, G. & Edelhauser, H. F. (1983) The transcorneal permeability of sulfonamide carbonic anhydrase inhibitors and their effects on aqueous humor secretion. Exp. Eye Res. 36, 457–480.

    Google Scholar 

  • Matsuda, M., Sawa, M., Edelhauser, H. F., Bartels, S. P., Neufeld, A. H. & Kenyon, K. R. (1985) Cellular migration and morphology in corneal endothelial wound repair. Invest. Ophthal. 26, 443–449.

    Google Scholar 

  • Matsumoto, S., Hayashi, K., Tsuchisaka, H. & Araie, M. (1981) Pharmacokinetics of surface anesthetics in the human cornea. Jap. J. Ophthal. 25, 335–340.

    Google Scholar 

  • di Mattio, J. (1984) In vivo entry of glucose analogs into lens and cornea of the rat. Invest. Ophthal. 25, 160–165.

    Google Scholar 

  • Maurice, D. M. (1951) The permeability to sodium ions of the living rabbit’s cornea. J. Physiol. 122, 367–391.

    Google Scholar 

  • Maurice, D. M. (1957) The structure and transparency of the cornea. J. Physiol. 136, 263–286.

    Google Scholar 

  • Maurice, D. M. (1967) Epithelial potential of the cornea. Exp. Eye Res. 6, 138–140.

    Google Scholar 

  • Maurice, D. M. (1968) Cellular membrane activity in the corneal endothelium of the eye. Experientia 24, 1094–1095.

    Google Scholar 

  • Maurice, D. M. (1969) The cornea and sclera. In The Eye. Ed. Davson, Vol. I, pp. 489–600. London: Academic Press.

    Google Scholar 

  • Maurice, D. M. (1972) The location of the fluid pump in the cornea. J. Physiol. 221, 43–54.

    Google Scholar 

  • Maurice, D. M. (1984) The cornea and sclera. In The Eye. Vol. IB, Ed. H. Davson, 3rd. Edn. pp. 1–158. New York: Academic Press.

    Google Scholar 

  • Maurice, D. M. & Giardini, A. A. (1951) Swelling of the cornea in vivo after the destruction of its limiting layers. Brit. J. Ophthal. 35, 791–797.

    Google Scholar 

  • Maurice, D. M. & Riley, M. V. (1970) The cornea. In Biochemistry of the Eye. Ed. Graymore, C., pp. 1–103. London: Academic Press.

    Google Scholar 

  • Maurice, D. M., Zauberman, H. & Michaelson, I. C. (1966) The stimulus to neovascularization in the cornea. Exp. Eye Res. 5, 168–184.

    Google Scholar 

  • Meier, S. & Hay, E. D. (1973) Synthesis of sulfated glycosaminoglycans by embryonic corneal epithelium. Dev. Biol. 35, 318–331.

    Google Scholar 

  • Meyers-Elliott, R. H. & Chitjian, P. A. (1981) Immunopathogenesis of corneal inflamation: role of polymorphonuclear leukocyte. Invest. Ophthal. 20, 784–798.

    Google Scholar 

  • Midelfart, A. (1987a) The effects of amiloride, ouabain and osmolality on sodium transport across bovine cornea. Pflugers Arch. 408, 243–248.

    Google Scholar 

  • Midelfart, A. (1987b) The effect of amiloride on Na, K and water in bovine corneal epithelium. Exp. Eye Res. 45, 751–762.

    Google Scholar 

  • Minkowski, J. S., Bartels, S. P., Delari, F. C., Lee, S. R., Kenyon, K. R. & Neufeld, A. H. (1984) Corneal endothelial function and structure following cryo-injury in the rabbit. Invest. Ophthal. 25, 1416–1425.

    Google Scholar 

  • Mishima, S. (1981) Clinical pharmacokinetics of the eye. Invest. Ophthal. 21, 504–541.

    Google Scholar 

  • Mishima, S. (1982) Clinical investigations on the corneal endothelium. Amer. J. Ophthal. 93, 1–29.

    Google Scholar 

  • Mishima, S. & Trenberth, S. M. (1968) Permeability of the corneal endothelium to nonelectrolytes. Invest. Ophthal. 7, 34–43.

    Google Scholar 

  • Murphy, C., Alvarado, J., Juster, R. & Maglio, M. (1984) Prenatal and postnatal cellularity of the human corneal endothelium. Invest. Ophthal. 25, 312–322.

    Google Scholar 

  • Myers, D. B., Highton, T. C. & Rayns, D. G. (1973) Ruthenium red-positive filaments interconnecting collagen fibrils. J. Ultrastr. Res. 42, 87–92.

    Google Scholar 

  • Nakagawa, S., Nishida, T. & Manabe, R. (1985) Actin organization in migrating corneal epithelium of rabbits in situ. Exp. Eye Res. 41, 335–343.

    Google Scholar 

  • Neufeld, A. H., Jumblatt, M. M., Malkin, E. D. & Raymond, G. M. (1986) Maintenance of corneal endothelial cell shape by prostaglandin E2: effects of EGF and indomethacin. Invest. Ophthal. 27, 1437–1442.

    Google Scholar 

  • Neufeld, A. H., Ledgard, S. E., Jumblatt, M. M. & Klyce, S. D. (1982) Serotonin-stimulated cyclic AMP synthesis in the rabbit corneal epithelium. Invest. Ophthal. 23, 193–198.

    Google Scholar 

  • Nishida, T., Nakagawa, S., Nishibayashi, C., Tanaka, H. & Manabe, R. (1984) Fibronectin enhancement of corneal epithelial wound healing in rabbits in vivo. Arch. Ophthal. 102, 455–456.

    Google Scholar 

  • Nishida, T., Nakagawa, S., Ohashi, Y., Awata, T. & Manabe, R. (1982) Fibronectin in corneal wound healing: appearance in cultured rabbit cornea. Jap. J. Ophthal. 26, 410–415.

    Google Scholar 

  • Nishida, T., Ohashi, Y., Awata, T. & Manabe, R. (1983) Fibronectin. A new therapy for corneal trophic ulcer. Arch. Ophthal. 101, 1046–1048.

    Google Scholar 

  • Olsen, T. & Sperling, S. (1987) The swelling pressure of the human corneal stroma as determined by a new method. Exp. Eye Res., 44, 481–490.

    Google Scholar 

  • Otori, T. (1967) Electrolyte content of the rabbit corneal stroma. Exp. Eye Res. 6, 356–367.

    Google Scholar 

  • Ottersen, O. P. & Vegge, T. (1977) Ultrastructure and distribution of intercellular junctions in corneal endothelium. Acta Ophthal. 55, 69–78.

    Google Scholar 

  • Pedler, C. (1962) The fine structure of the corneal epithelium. Exp. Eye Res., 1, 286–289.

    Google Scholar 

  • Polse, K. A. & Mandell, R. B. (1970) Critical oxygen tension at the corneal surface. Arch. Ophthal. 84, 505–508.

    Google Scholar 

  • Potts, A. M. & Modrell, R. W. (1957) The transcorneal potential. Am. J. Ophthal. 44, 284–290.

    Google Scholar 

  • Raymond, G. M., Jumblatt, M. M., Bartels, S. P. & Neufeld, A. H. (1986) Rabbit corneal endothelial cells in vitro: effects of EGF. Invest. Ophthal. 27, 474–479.

    Google Scholar 

  • Reinach, P. S. & Kirchberger, M. A. (1983) Evidence for catecholamine-stimulated cyclase activity in frog and rabbit corneal epithelium and cyclic AMP-dependent protein kinase and its protein substrates in frog corneal epithelium. Exp. Eye Res., 37, 327–335.

    Google Scholar 

  • Rexed, B. & Rexed, V. (1951) Degeneration and regeneration of corneal nerves. Br. J. Ophthal. 35, 38–49.

    Google Scholar 

  • Riley, M. V. (1969) Glucose and oxygen utilization by the rabbit cornea. Exp. Eye Res. 8, 193–200.

    Google Scholar 

  • Riley, M. W. (1977) Anion-sensitive ATPase in rabbit corneal endothelium and its relation to corneal hydration. Exp. Eye Res. 25, 483–494.

    Google Scholar 

  • Rochels, R. & Busse, W. D. (1983) Experimentelle Untersuchungen zum Einflusz von Prostaglandin- und Leukotrien-Synthesehemmern auf die Epithelregeneration der Hornhaut. v. Graefes Arch. Ophthol., 220, 74–78.

    Google Scholar 

  • Rochels, R. & Busse, W. D. (1984) In vivo evidence for the chemotactic activity of cyclooxygenase- and lipoxygenase-dependent compounds using a corneal implantation technique. Ophthal. Res., 16, 194–197.

    Google Scholar 

  • Romero, J. A. & Axelrod, J. (1974) Pineal β-adrenergic receptor diurnal variation in sensitivity. Science 184, 1091–1092.

    Google Scholar 

  • Savage, C. R. & Cohen, S. (1973) Proliferation of cornea epithelium induced by epidermal growth factor. Exp. Eye Res. 15, 361–366.

    Google Scholar 

  • Schwarz, W. (1953) Elekronenmikroskopische Untersuchungen uber den Aufbau der Sklera und der Cornea des Menschen. Z. Zellforsch. 38, 20–49.

    Google Scholar 

  • Schwarz, W. & Keyserlingk, D. G. (1966) Uber die Fienstruktur der menschlichen Cornea, mit besonderer Berüchsichtigung des Problems der Transparenz. Z. Zellforsch. 73, 540–548.

    Google Scholar 

  • Shapiro, M. S., Friend, J. & Thoft, R. A. (1981) Corneal re-epithelialization from the conjunctiva. Invest. Ophthal. 21, 135–142.

    Google Scholar 

  • Sholley, M. M., Gimborne, M. A. & Cotran, R. S. (1978) The effect of leukocytes depletion on corneal neovascularization. Lab. Invest. 38, 32–44.

    Google Scholar 

  • Simonsen, A. H., Sørensen, K. E. & Sperling, S. (1981) Thymidine incorporation by human corneal endothelium during organ culture. Acta Ophthal. 59, 110–118.

    Google Scholar 

  • Smelser, G. K. & Ozanics, V. (1953) Structural changes in corneas of guinea pigs after wearing contact lenses. Arch. Ophthal., 49, 335–340.

    Google Scholar 

  • Smith, J. W. (1969) The transparency of the corneal stroma. Vision Res. 9, 393–396.

    Google Scholar 

  • Srinivasan, B. D., Worgul, B. V., Iwamoto, T. & Eakins, K. E. (1977) The reepithelialization of rabbit cornea following partial and complete epithelial denudation. Exp. Eye Res., 25, 343–351.

    Google Scholar 

  • Stanworth, A. & Naylor, E. S. (1953) Polarized light studies of the cornea. J. exp. Biol. 30, 164–169.

    Google Scholar 

  • Sugaya, M. & Nagataki, S. (1978) Kinetics of topical pilocarpine in the human eye. Jap. J. Ophthal. 22, 127–141.

    Google Scholar 

  • Swan, K. C. & White, N. G. (1942) Corneal permeability. Am. J. Ophthal. 25, 1043–1058.

    Google Scholar 

  • Teng, G. C. (1961) The fine structure of the corneal epithelium and basement membrane of the rabbit. Am. J. Ophthal. 51, 278–297.

    Google Scholar 

  • Teng, S. C. G., Savion, N., Gospodarowicz, D. & Stern, R. (1981) Characterization of collagens synthesized by cultured bovine corneal endothelial cells. J. biol. Chem. 256, 3361–3365.

    Google Scholar 

  • Tervo, T. & Palkama, A. (1975) Electron microscopic localization of adenosine triphosphatase (NaK-ATPase) activity in the rat cornea. Exp. Eye Res. 21, 269–279.

    Google Scholar 

  • Thoft, R. A. & Friend, J. (1972) Corneal amino acid supply and distribution. Invest. Ophthal. 11, 723–727.

    Google Scholar 

  • Thoft, R. A. & Friend, J. (1975) Permeability of regenerated corneal epithelium. Exp. Eye Res. 21, 409–416.

    Google Scholar 

  • Thoft, R. A. & Friend, J. (1977) Biochemical transformation of regenerating ocular surface epithelium. Invest. Ophthal. 16, 14–20.

    Google Scholar 

  • Thoft, R. A., Friend, J. & Dohlman, C. H. (1971a) Corneal glucose concentration. Arch. Ophthal. 85, 467–472.

    Google Scholar 

  • Thoft, R. A., Friend, J. & Dohlman, C. H. (1971b) Corneal glucose flux. II. Arch. Ophthal. 86, 685–691.

    Google Scholar 

  • Thompson, P., Desbordes, J. M., Giraud, J., Pouliquen, Y., Barritault, D. & Courtois, Y. (1982). The effect of an eye derived growth factor (EDGF) on corneal epithelial regeneration. Exp. Eye Res. 34, 191–199.

    Google Scholar 

  • Timpl, R., Rohde, H., Robey, P. G., Rennard, S. I., Foidart, J.-M. & Martin, G. R. (1979). Laminin—a glycoprotein from basement membranes. J. biol Chem. 254, 9933–9937.

    Google Scholar 

  • Toole, B. P. & Trelstad, R. L. (1971) Hyaluronate production and removal during corneal development in the chick. Dev. Biol. 26, 28–35.

    Google Scholar 

  • Trelstad, R. L. & Coulombre, A. J. (1971) Morphogenesis of the collagenous stroma in the chick cornea. J. Cell Biol. 50, 840–858.

    Google Scholar 

  • Trelstad, R. L., Hayashi, K. & Toole, B. P. (1974) Epithelial collagens and glycosaminoglycans in the embryonic cornea. J. Cell Biol. 62, 815–830.

    Google Scholar 

  • Trelstad, R. L. & Kang, A. H. (1974) Collagen heterogeneity in the avian eye: lens, vitreous body, cornea and sclera. Exp. Eye Res. 18, 395.

    Google Scholar 

  • Trenberth, S. M. & Mishima, S. (1968) The effect of ouabain on the rabbit corneal endothelium. Invest. Ophthal. 7, 44–52.

    Google Scholar 

  • Tsuru, T., Araie, M., Matsubara, M. & Tanishima, T. (1984) Endothelial wound healing of monkey cornea: fluorophotometric and specular microscopic studies. Jap. J. Ophthal., 28, 105–125.

    Google Scholar 

  • Tuft, S. J., Williams, K. A. & Coster, D. J. (1986) Endothelial repair in the rat cornea. Invest. Ophthal. 27, 1199–1204.

    Google Scholar 

  • Turss, R., Friend, J. & Dohlman, C. H. (1970) Effect of a corneal fluid barrier on the nutrition of the epithelium. Exp. Eye Res. 9, 254–259.

    Google Scholar 

  • Twersky, V. (1976) Transparency of pair-correlated, random distributions of small scatterers, with application to the cornea. J. opt. Soc. Amer. 65, 524–530.

    Google Scholar 

  • Van Horn, D. L. & Hyndiuk, R. A. (1975) Endothelial wound repair in primate cornea. Exp. Eye Res. 21, 113–124.

    Google Scholar 

  • Yamada, K. M. & Olden, K. (1978) Fibronectins—adhesive glycoproteins of cell surface and blood. Nature 275, 179–184.

    Google Scholar 

  • Yee, R. W., Edelhauser, H. F. & Stern, M. E. (1987) Specular microscopy of vertebrate corneal endothelium: a comparative study. Exp. Eye Res. 44, 703–714.

    Google Scholar 

  • Yee, R. W., Geroski, D. H., Matsuda, M., Champeau, E. J., Meyer, L. A. & Edelhauser, H. F. (1985) Correlation of corneal endothelial pump site density, barrier function, and morphology in wound repair. Invest. Ophthal. 26, 1191–1201.

    Google Scholar 

  • Yoshida, S. & Mishima, S. (1975) A pharmacokinetic analysis of the pupil response to topical pilocarpine and tropicamide. Jap. J. Ophthal., 19, 121–138.

    Google Scholar 

  • Zadunaisky, J. A. (1966) Active transport of chloride in frog cornea. Am. J. Physiol. 211, 506–512.

    Google Scholar 

  • Zadunaisky, J. A. (1969) The active chloride transport of the frog cornea. In The Cornea. Ed. Langham, M. E., pp. 3–34. Baltimore: Johns Hopkins Press.

    Google Scholar 

  • Zadunaisky, J. A., Lande, M. A. & Hafner, J. (1971) Further studies on chloride transport in the frog cornea. Amer. J. Physiol, 221, 1832–1836.

    Google Scholar 

  • Zander, E. & Weddell, G. (1951) Observations on the innervation of the cornea. J. Anat. Lond. 85, 68–99.

    Google Scholar 

  • Zauberman, H., Michaelson, I. C., Bergman, F. & Maurice, D. M. (1969) Stimulation of neovascularization of the cornea by biogenic amines. Exp. Eye Res. 8, 77–83.

    Google Scholar 

  • Zieske, J. D., Higashijima, S. C. & Gipson, I. K. (1986) Con Aand WGA-binding glycoproteins of stationary and migratory corneal epithelium. Invest. Ophthal. 27, 1205–1210.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 1990 Hugh Davson

About this chapter

Cite this chapter

Davson, H. (1990). The Cornea. In: Physiology of the Eye. Palgrave, London. https://doi.org/10.1007/978-1-349-09997-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-09997-9_3

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-09999-3

  • Online ISBN: 978-1-349-09997-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics