Skip to main content
  • 109 Accesses

Abstract

The aperture of the refracting system of the eye is controlled by the iris which behaves as a diaphragm, contracting or expanding as a result of the opposing actions of two muscles of ectodermal origin, namely the sphincter pupillae and the dilator pupillae. As classically described, the sphincter is an annular band of smooth muscle, 0.75 to 0.8 mm broad in man, encircling the pupillary border, which on contraction draws out the iris and constricts the pupillary aperture. At the pupillary border the muscle is closely associated with the pigment epithelium, so that, on contraction, the latter tends to be drawn on to the anterior surface of the iris. The sphincter is closely adherent to the adjacent connective tissue so that, after an iridectomy, it does not contract up, and the pupil remains reactive to light. Like the sphincter, the dilator muscle is of ectodermal origin, but in the sphincter the ectodermal cells have been transformed into true muscle fibres whereas the cells of the dilator retain their primitive characteristics and are called myoepithelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akert, K., Glicksman, M. A., Lang, W., Grob, P. & Huber, A. (1980) The Edinger-Westphal nucleus in the monkey. A retrograde tracer study. Brain Res. 184, 491–498.

    Article  Google Scholar 

  • Alexandridis, E. & Koeppe, E. R. (1969) Die spektrale Empfindlichkeit der für den Pupillenlichtreflex verantwortlichen Photoreceptoren beim Menschen. v. Graefs’ Arch. Ophthal. 177, 136–151.

    Article  Google Scholar 

  • Alpern, M. & Campbell, F. W. (1962) The spectral sensitivity of the consensual light reflex. J. Physiol. 164, 478–507.

    Article  Google Scholar 

  • Bennett, D. R., Reinke, D. A., Alpert, E., Baum, T. & Vasquez-Leon, H. (1961) The action of intraocularly administered adrenergic drugs on the iris. J. Pharmacol. 134, 190–198.

    Google Scholar 

  • Bonvallet, M. & Zbrozyna, A. (1963) Les commandes reticulaires du système autonome et en particulier de l’innervation sympathique de la pupille. Arch. Ital. Biol. 101, 174–207.

    Google Scholar 

  • Castiglioni, A. J., Gallaway, M. C. & Coulter, J. D. (1978) Spinal projections from the midbrain in monkey. J. Comp. Neurol. 178, 329–346.

    Article  Google Scholar 

  • Cavaggioni, A., Madarasz, I. & Zampollo, A. (1968) Photic reflex and pretectal region. Arch. ital. Biol. 106, 227–240.

    Google Scholar 

  • De Groot, S. G. & Gebhard, J. W. (1952) Pupil size as determined by adapting luminance. J. Opt. Soc. Am. 42, 492–495.

    Article  Google Scholar 

  • Ehinger, B., Falck, B. & Persson, H. (1968) Function of cholinergic nerve fibres in the cat iris dilator. Acta Physiol. Scand. 72, 139–147.

    Article  Google Scholar 

  • Hartmann-von Monakow, K., Akert, K. & Künzle, H. (1979) Projections of precentral and premotor cortex to the red nucleus and other midbrain areas. Exp. Brain Res. 34, 91–105.

    Article  Google Scholar 

  • Hess, W. R. (1957) The Functional Organizatio of the Diencephalon. New York: Grune & Stratton.

    Google Scholar 

  • Hultborn, H., Mori, K. & Tsukahara, N. (1978a) The neuronal pathway subserving the pupillary light reflex. Brain Res. 159, 255–267.

    Article  Google Scholar 

  • Hultborn, H., Mori, K. & Tsukahara, N. (1978b) Cerebellar influence on parasympathetic neurones innervating intraocular muscles. Brain Res. 159, 269–278.

    Article  Google Scholar 

  • Ijichi, Y., Kiyohara, T., Hosoba, M. & Tsukahara, N. (1977) The cerebellar control of the pupillary light reflex in the cat. Brain Res. 128, 69–79.

    Article  Google Scholar 

  • Jampel, R. S. & Mindel, J. (1967) The nucleus for accommodation in the midbrain of the macaque. Invest. Ophthal. 6, 40–50.

    Google Scholar 

  • Loewy, A. D., Saper, C. B. & Yamodis. (1978) Re-evaluation of the efferent projections of the Edinger-Westphal nucleus in the cat. Brain Res. 141, 153–159.

    Article  Google Scholar 

  • Lowenstein, O. & Loewenfeld, I. E. (1958) Electronic pupillography. Arch. Ophthal. 59, 352–363.

    Article  Google Scholar 

  • Lowenstein, O. & Loewenfeld, I. E. (1959a) Scotopic and photopic thresholds of the pupillary light reflex in normal man. Am. J. Ophthal. 48, pt. 2, 87–98.

    Google Scholar 

  • Lowenstein, O. & Loewenfeld,\ I. E. (1959b) Influence of retinal adaptation upon the pupillary reflex to light in normal man. Am. J. Ophthal. 48, pt. 2, 536–550.

    Article  Google Scholar 

  • Lowenstein, O. & Loewenfeld, I. E. (1969) The Pupil. In The Eye, 2nd ed., Ed. Davson, Vol. III, pt. 2. London & New York: Academic Press.

    Google Scholar 

  • Magoun, H. W. & Ranson, S. W. (1953) The central path of the light reflex. Arch. Ophthal. 13, 791–811.

    Article  Google Scholar 

  • Nishida, S. & Sears, M. (1969a) Fine structural innervation of the dilator muscle of the iris of the albino guinea pig studied with permanganate fixation. Exp. Eye Res. 8, 292–296.

    Article  Google Scholar 

  • Nishida, S. & Sears, M. (1969b) Dual innervation of the iris sphincter muscle of the albino guinea pig. Exp. Eye Res. 8, 467–469.

    Article  Google Scholar 

  • Passatore, M. (1976) Physiological characterization of efferent cervical sympathetic fibers influenced by changes of illumination. Exp. Neurol. 53, 71–81.

    Article  Google Scholar 

  • Passatore, M. & Pettorossi, V. E. (1976) Efferent fibers in the cervical sympathetic nerve influenced by light. Exp. Neurol. 52, 66–82.

    Article  Google Scholar 

  • Patil, P. N. (1969) Adrenergic receptors of the bovine iris sphincter. J. Pharmacol. 166, 299–307.

    Google Scholar 

  • Pierson, R. J. & Carpenter, M. B. (1974) Anatomical analysis of pupillary reflex pathways in the rhesus monkey. J. comp. Neurol. 158, 121–143.

    Article  Google Scholar 

  • Richardson, K. C. (1964) The fine structure of the albino rabbit iris with special reference to the identification of adrenergic and cholinergic nerves and nerve endings in its intrinsic muscles. Am. J. Anat. 114, 173–184.

    Article  Google Scholar 

  • Scalia, F. (1972) The termination of retinal axons in the pretectal region of mammals. J. comp. Neurol. 145, 223–245.

    Article  Google Scholar 

  • Schweitzer, N. M. J. (1956) Threshold measurements on the light reflex of the pupil in the dark adapted eye. Doc. Ophthal. 10, 1–78.

    Article  Google Scholar 

  • Sillito, A. M. (1968) The location and activity of pupilloconstrictor neurones in the mid-brain of the cat. J. Physiol. 194, 39–40 P.

    Google Scholar 

  • Sillito, A. M. & Zbrozyna, A. W. (1970) The localization of pupilloconstrictor function within the mid-brain of the cat. J. Physiol. 211, 461–477.

    Article  Google Scholar 

  • Smith, J. D., Masek, G. A., Ichinose, L. Y., Watanabe, T. & Stark, L. (1970) Single neuron activity in the pupillary system. Brain Res. 24, 219–234.

    Article  Google Scholar 

  • Stark, L., Campbell, F. W. & Atwood, J. (1958) Pupil unrest: an example of noise in a biological servomechanism. Nature, Lond. 182, 857–858.

    Article  Google Scholar 

  • Suzuki., R., Oso, T. & Kobayashi, S. (1983) Cholinergic inhibitory response in the bovine iris muscle. Invest. Ophthal. 24, 760–765.

    Google Scholar 

  • Swanson, L. W., Cowan, W. M. & Jones, E. G. (1974). An autoradiographic study of the efferent connections of the ventral lateral geniculate nucleus in the albino rat and the cat. J. Comp. Neurol. 156, 143–163.

    Article  Google Scholar 

  • Toyoshima, K., Kawana, E. & Sakai, H. (1980) On the neuronal origin of the afferents to the ciliary ganglion in cat. Brain Res. 185, 67–76.

    Article  Google Scholar 

  • Van Alphen, G. W. H. M., Kern, R. & Robinette, L. (1965) Adrenergic receptors of the intraocular muscles. Arch. Ophthal. N.Y. 74, 253–259.

    Article  Google Scholar 

  • Van Alphen, G. W. H. M., Robinette, S. L. & Macri, F. J. (1964) The adrenergic receptors of the intraocular muscles of the cat. Int. J. Neuropharmacol. 2, 259–272.

    Article  Google Scholar 

  • Westheimer, G. & Blair, S. M. (1973) The parasympathetic pathways to internal eye muscles. Invest. Ophthal. 12, 193–197.

    Google Scholar 

  • Yoshitomi, T. & Ito, Y. (1986) Pre-synaptic action of noradrenaline on the dog ciliary muscle tissue. Exp. Brain Res. 43, 119–127.

    Google Scholar 

  • Yoshitomi, T., Ito, Y. & Inomata, H. (1985) Adrenergic excitatory and cholinergic inhibitory innervation in the human iris dilator. Exp. Eye Res. 40, 453–459.

    Article  Google Scholar 

  • Zhang, S. Q., Butler, J. M., Ohara, K. & Cole, D. F. (1982) Sensory neural mechanisms in contraction of the isolated sphincter pupillae: the role for substance P and the effects of sensory denervation on the response to miotics. Exp. Eye Res. 35, 43–54.

    Article  Google Scholar 

  • Zhang, S. Q., Butler, J. M. & Cole, D. F. (1984) Sensory neural mechanisms in contraction of the rabbit isolated sphincter pupillae: analysis of the responses to capsaicin and electrical field stimulation. Exp. Eye Res. 38, 153–163.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 1990 Hugh Davson

About this chapter

Cite this chapter

Davson, H. (1990). The Pupil. In: Physiology of the Eye. Palgrave, London. https://doi.org/10.1007/978-1-349-09997-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-09997-9_26

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-09999-3

  • Online ISBN: 978-1-349-09997-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics