Advertisement

Tet repressor-tet operator interaction

Chapter
  • 23 Downloads
Part of the Topics in Molecular and Structural Biology book series (TMSB)

Abstract

Tetracycline resistance genes are widespread among gram-negative aerobic bacteria. A large number of independent isolates have been characterized and most of them shown to belong to five different classes of determinants, named classes A to E. They are usually plasmid- or transposon-encoded and share several genetic and mechanistic features (Chopra et al., 1981; Izaki et al., 1966; Levy and McMurray, 1978; Mendez et al., 1980; Marshall et al., 1986; Levy, 1988). Resistance against the drug is achieved by an active export mechanism of tetracycline from the resistant cell. This is mediated by a membrane associated resistance protein (McMurray et al., 1980; Waters et al., 1983; Hillen and Schollmeier, 1983; Nguyen et al., 1983). The expression of this protein is inducible by subinhibitory amounts of tetracycline (Mendez et al., 1980). This regulation of expression occurs at the level of transcription. It is brought about by a repressor protein, which under non-inducing conditions represses expression of the resistance gene, as well as that of its own gene. Induction of tetracycline resistance is achieved by binding of tetracycline to the repressor, thereby inactivating the operator-binding function of the protein and allowing expression of both genes. The regulated genes termed tetA for resistance and tetR for repressor are arranged adjacent to each other with opposite polarity and share common regulatory sequences comprising at least two promotors and two operators per determinant (Beck et al., 1982; Wray et al., 1981; Jorgensen and Reznikoff, 1979; Hillen et al., 1984; Hillen et al., 1982a; Bertrand et al., 1983; Altenbuchner et al., 1983; Unger et al., 1984a; Unger et al., 1984b; Tovar et al., 1988).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altenbuchner, J., Schmid, K. and Schmitt, R. (1983). Tn1721-encoded tetracycline resistance: mapping of structural and regulatory genes mediating resistance. J. Bacteriol., 153, 116–123Google Scholar
  2. Altschmied, L. and Hillen, W. (1984). Tet repressor-tet operator complex formation induces conformational changes in the tet operator DNA. Nucl. Acids Res., 12, 2171–2180CrossRefGoogle Scholar
  3. Altschmied, L., Baumeister, R., Pfleiderer, K. and Hillen, W. (1988). A threonine to alanine exchange at position 40 of Tet repressor alters the recognition of the sixth base pair of tet operator from GC to AT. EMBO J., 7, 4011–4017Google Scholar
  4. Beck, C. F., Mutzel, R., Barbe, J. and Müller, W. (1982). A multifunctional gene (tetR) controls Tn10-encoded tetracycline resistance. J. Bacteriol., 150, 633–642Google Scholar
  5. Berg, O.G. and von Hippel. P. H. (1985). Diffusion-controlled macromolecular interactions. Ann. Rev. Biophys. Chem., 14, 131–160CrossRefGoogle Scholar
  6. Bertrand, K. P., Postle, K., Wray, L. V., Jr and Reznikoff, W. S. (1983). Overlapping divergent promoters control expression of Tn10 tetracycline resistance. Gene, 23, 149–156CrossRefGoogle Scholar
  7. Chopra, I., Howe, T. G. B., Linton, A. H., Linton, K. B., Richmond, M. H. and Spelber, D. C. E. (1981). The tetracyclines: prospects at the beginning of the 1980s. J. Antimicrob. Chemother., 5, 5–21CrossRefGoogle Scholar
  8. Ebright, R. H. (1986). Proposed amino acid-base pair contacts for 13 sequence-specific DNA binding proteins. Protein Structure, Folding, and Design. In UCLA Symposia on Molecular and Cellular Biology, Vol. 39 (Oxender, D. L., ed.), Liss, New York, 207–219Google Scholar
  9. Epe, B. and Woolley, P. (1984). The binding of 6-demethylchlortetracycline to 70S, 50S, and 30S ribosome particles: a quantitative study by fluorescence anisotropy. EMBO J., 3, 119–126Google Scholar
  10. Hansen, D., Altschmied, L. and Hillen, W. (1987). Engineered Tet repressor mutants with single tryptophan residues as fluorescent probes. J. Biol. Chem., 262, 14030–14035Google Scholar
  11. Hansen, D. and Hillen, W. (1987). Tryptophan in α-helix 3 of Tet repressor forms a sequence-specific contact with tet operator in solution. J. Biol. Chem., 262, 12269–12275Google Scholar
  12. Helene, C. and Dimicoli, J. (1972). Interaction of oligopeptides containing aromatic amino acids with nucleic acids. Fluorescence and proton magnetic resonance studies. FEBS Lett., 26, 6–10CrossRefGoogle Scholar
  13. Hershfield, V., Boyer, H. W., Chow, L. and Helinski, D. R. (1976). Characterization of a mini-ColEl plasmid. J. Bacteriol., 126, 447–453Google Scholar
  14. Hever, C. and Hillen, W. (1988). Tet repressor-tet operator contacts probed by operator DNA-modification interference studies. J. Mol. Biol., 202, 407–415CrossRefGoogle Scholar
  15. Hillen, W., Gatz, C., Altschmied, L., Schollmeier, K. and Meier, I. (1983). Control of expression of the Tn10-encoded tetracycline resistance genes: equilibrium and kinetic investigation of the regulatory reactions. J. Mol. Biol., 169, 707–722CrossRefGoogle Scholar
  16. Hillen, W., Klock, G., Kaffenberger, L., Wray, L. V., Jr and Reznikoff, W. S. (1982a). Purification of the Tet repressor and tet operator from the transposon Tn10 and characterization of their interaction. J. Biol. Chem., 257, 6605–6613Google Scholar
  17. Hillen, W., Klein, R. B. and Wells, R. D. (1981). Preparation of milligram amounts of 21 deoxyribonucleic acid restriction fragments. Biochemistry, 20, 3748–3756CrossRefGoogle Scholar
  18. Hillen, W. and Schollmeier, K. (1983). Nucleotide sequence of the Tn10 encoded tetracycline resistance gene. Nucl. Acids Res., 11, 525–539CrossRefGoogle Scholar
  19. Hillen, W., Schollmeier, K. and Gatz, C. (1984). Control of expression of the Tn10-encoded tetracycline resistance gene. II. Interaction of RNA polymerase and Tet repressor with the tet operon regulatory region. J. Mol. Biol., 172, 185–201CrossRefGoogle Scholar
  20. Hillen, W., Unger, B. and Klock, G. (1982b). Analysis of tet operator-Tet repressor complexes by thermal denaturation studies. Nucl. Acids Res., 10, 6085–6097CrossRefGoogle Scholar
  21. Hillen, W. and Unger, B. (1982). Binding of four repressors to double-stranded tet operator region stabilizes it against thermal denaturation. Nature, 297, 700–702CrossRefGoogle Scholar
  22. Hochschild, A. and Ptashne, M. (1986). Cooperative binding of λ repressors to sites separated by integral turns of the DNA helix. Cell, 44, 681–687CrossRefGoogle Scholar
  23. Isackson, P. J. and Bertrand, K. P. (1985). Dominant negative mutations in the Ta10 Tet repressor. Evidence for use of the conserved helix-turn-helix motif in DNA binding. Proc. Natl Acad. Sci. USA, 82, 6226–6230CrossRefGoogle Scholar
  24. Izaki, K., Kiuchi, K. and Arima, K. (1966). Specificity and mechanism of tetracycline resistance in a multiple drug resistant strain of Escherichia coli. J. Bacteriol., 91, 628–633Google Scholar
  25. Jorgensen, R. A. and Reznikoff, W. S. (1979). Organization of structural and regulatory genes that mediate tetracycline resistance in transposon Tn10. J. Bacteriol., 138, 705–714Google Scholar
  26. Kleinschmidt, C., Tovar, K., Hillen, W. and Pörschke, D. (1988). Dynamics of a Repressor-Operator Recognition: the Tn10 encoded tetracycline resistance control. Biochemistry, 27, 1094–1104CrossRefGoogle Scholar
  27. Klock, G. and Hillen, W. (1986). Expression, purification and operator binding of the transposon Tn1721-encoded Tet repressor. J. Mol. Biol., 189, 633–641CrossRefGoogle Scholar
  28. Klock, G., Unger, B., Gatz, C., Hillen, W., Altenbuchner, J., Schmid, K. and Schmitt, R. (1985). Heterologous repressor-operator recognition among four classes of tetracycline resistance determinants. J. Bacteriol., 161, 326–332Google Scholar
  29. Lederer, H. Tovar, K., Baer, G., May, R. P., Hillen, W. and Heumann, H. (1989). The quaternary structure of Tet repressors bound to the Tn10 encoded tet gene control region determined by neutron solution scattering. EMBO J., in the pressGoogle Scholar
  30. Levy, S. B. and McMurray, L. (1978). Plasmid-determined tetracycline resistance involves new transport systems for tetracycline. Nature, 275, 90–92CrossRefGoogle Scholar
  31. Levy, S. B. (1988). Tetracycline resistance determinants are widespread. ASM News, 54, 418–421Google Scholar
  32. Little, J. W., Edmiston, S. H., Pacelli, L. Z. and Mount, D. W. (1980). Cleavage of the Escherichia coli lexA protein by the recA protease. Proc. Natl Acad. Sci. USA, 77, 3225–3229CrossRefGoogle Scholar
  33. Liu-Johnson, H-N., Gartenberg, M. R. and Crothers, D. M. (1986). The DNA bending domain and bending angle of E. coli CAP protein. Cell, 47, 681–687CrossRefGoogle Scholar
  34. McMurray, L., Petrucci, R. E. and Levy, S. B. (1980). Active efflux of tetracycline encoded by four genetically different resistance determinants in Escherichia coli. Proc. Natl Acad. Sci. USA, 77, 3974–3977CrossRefGoogle Scholar
  35. Marshall, B., Morrisey, S., Flynn, P. and Levy, S. B. (1986). A new tetracycline resistance determinant, class E, Isolated from Enterobacteriaceae. Gene, 50, 111–117CrossRefGoogle Scholar
  36. Meier, I., Wray, L. V., Jr and Hillen, W. (1988). Differential regulation of the Tn10 encoded tetracycline resistance genes tetA and tetR by the tandem tet operators O1 and O2. EMBO J., 7, 567–572Google Scholar
  37. Mendez, B., Tachibana, C. and Levy, S. B. (1980). Heterogeneity of tetracycline resistance determinants. Plasmid, 3, 99–108CrossRefGoogle Scholar
  38. Nguyen, T. T., Postle, K. and Bertrand, K. P. (1983). Sequence homology between the tetracycline resistance determinants of Tn10 and pBR322. Gene, 25, 83–92CrossRefGoogle Scholar
  39. Oemichen, R., Klock, G., Altschmied, L. and Hillen, W. (1984). Construction of an E. coli strain overproducing the Tn10-encoded TET repressor and its use for large scale purification. EMBO J., 3, 539–543Google Scholar
  40. Ohlendorf, D. H., Anderson, W. F., Lewis, M., Pabo, C. O. and Matthews, B. W. (1983). Comparison of the structures of Cro and λ repressor proteins from bacteriophage λ. J. Mol. Biol., 169, 757–769CrossRefGoogle Scholar
  41. Pabo, C. O. and Sauer, R. T. (1984). Protein-DNA recognition. Ann. Rev. Biochem., 53, 293–321CrossRefGoogle Scholar
  42. Pörschke, D. and Ronnenberg, J. (1981). The reaction of aromatic peptides with double helical DNA. Quantitative characterization of a two step reaction scheme. Biophys. Chem., 13, 283–290CrossRefGoogle Scholar
  43. Pörschke, D., Tovar, K. and Antosiewicz, J. (1988). Structure of the Tet repressor-operator complexes in solution from electrooptical measurements and hydrodynamic simulations. Biochemistry, 27, 4674–4679CrossRefGoogle Scholar
  44. Postle, K., Nguyen, T. T. and Bertrand, K. P. (1984). Nucleotide sequence of the repressor gene of the Tn10 tetracycline resistance determinant. Nucl. Acids Res., 12, 4849–4863CrossRefGoogle Scholar
  45. Ptashne, M., Backman, K., Humayun, M. Z., Jeffrey, A., Maurer, R., Meyer, B. and Sauer, R. T. (1976). Autoregulation and function of a repressor in bacteriophage lambda. Science, 194, 156–161CrossRefGoogle Scholar
  46. Ptashne, M., Jeffrey, A., Johnson, A. D., Maurer, R., Meyer, B. J., Pabo, C. O., Roberts, T. M. and Sauer, R. T. (1980). How the λ repressor and cro work. Cell, 19, 1–11CrossRefGoogle Scholar
  47. Roberts, J. W. and Roberts, C. W. (1975). Proteolytic cleavage of bacteriophage lambda repressor in induction. Proc. Natl Acad. Sci. USA, 72, 147–159CrossRefGoogle Scholar
  48. Sauer, R. T., Yocum, R. R., Doolittle, R. F., Lewis, M. and Pabo, C. O. (1982). Homology among DNA-binding proteins suggests use of a conserved super-secondary structure. Nature, 298, 447–451CrossRefGoogle Scholar
  49. Schevitz, R. W., Otwinowski, Z., Joachimiak, A., Lawson, C. L. and Sigler, P. B. (1985). The three-dimensional structure of trp repressor. Nature, 317, 782–786CrossRefGoogle Scholar
  50. Seeman, N. C., Rosenberg, J. M. and Rich, A. (1976). Sequence-specific recognition of double helical nucleic acids by proteins. Proc. Natl Acad. Sci. USA, 73, 804–808CrossRefGoogle Scholar
  51. Takahashi, M., Altschmied, L. and Hillen, W. (1986). Kinetic and equilibrium characterization of the Tet repressor-tetracycline complex by fluorescence measurements. J. Mol. Biol., 107, 341–348CrossRefGoogle Scholar
  52. Tovar, K., Ernst, A. and Hillen, W. (1988). Identification and nucleotide sequence of the class E tet regulatory elements and operator and inducer binding of the encoded purified Tet repressor. Mol. Gen. Genet., 215, 76–80CrossRefGoogle Scholar
  53. Unger, B., Becker, J. and Hillen, W. (1984a). Nucleotide sequence of the gene, protein purification and characterization of the pSC101-encoded tetracycline resistance-gene-repressor. Gene, 31, 103–108CrossRefGoogle Scholar
  54. Unger, B., Klock, G. and Hillen, W. (1984b). Nucleotide sequence of the repressor gene of the RA1 tetracycline resistance determinant: structural and functional comparison with three related Tet repressor genes. Nucl. Acids Res., 12, 7693–7703CrossRefGoogle Scholar
  55. Wagenhöfer, M., Hansen, D. and Hillen, W. (1988). Thermal denaturation of engineered Tet repressor proteins and their complexes with tet operator and tetracycline studied by temperature gradient gel electrophoresis. Ann. Biochem., 175, 422–432CrossRefGoogle Scholar
  56. Waters, S., Rogowsky, P., Grinsted, J., Altenbuchner, J. and Schmitt, R. (1983). The tetracycline resistance determinants of RP1 and Tn1721: nucleotide sequence analysis. Nucl. Acids Res., 11, 6089–6105CrossRefGoogle Scholar
  57. Weber, K. and Geisler, N. (1978). lac repressor fragments produced in vivo and in vitro: an approach to the understanding of the interaction of repressor and DNA. In The Operon, Reznikoff, W. S. and Miller, J. (eds), Cold Spring Harbour Laboratory Press, New York, 155–175Google Scholar
  58. Wells, R. D., Goodman, T. C., Hillen, W., Horn, G. T., Klein, R. D., Larson, J. E., Müller, U. R., Neuendorf, S. K., Panayotatos, N. and Stirdivant, S. M. (1980). Prog. Nucl. Acids Res. Molec. Biol., 24, 167–267CrossRefGoogle Scholar
  59. Wissmann, A., Meier, I. and Hillen, W. (1988). Saturation mutagenesis of the Tn10-encoded tet operator O1: identification of base pairs involved in Tet repressor recognition. J.Mol. Biol., 202, 397–406CrossRefGoogle Scholar
  60. Wray, L. V., Jr, Jorgensen, R. A. and Reznikoff, W. S. (1981). Identification of the tetracycline resistance promoter and repressor in transposon Tn10. J. Bacteriol., 147, 297–304Google Scholar
  61. Wray, L. V., Jr and Reznikoff, W. S. (1983). Identification of repressor binding sites controlling expression of tetracycline resistance encoded by Tn10. J. Bacteriol., 156, 1188–1191Google Scholar
  62. Zhang, R-G., Joachimiak, A., Lawson, C. L., Schevitz, R. W., Otwinowski, Z. and Sigler, P. B. (1987). The crystal structure of trp aporepressor at 1.8 Å shows how binding tryptophan enhances DNA affinity. Nature, 327, 591–597CrossRefGoogle Scholar

Copyright information

© The Contributors 1989

Authors and Affiliations

There are no affiliations available

Personalised recommendations