Advertisement

Structural and functional studies of ribonuclease T1

Chapter
  • 23 Downloads
Part of the Topics in Molecular and Structural Biology book series (TMSB)

Abstract

Ribonuclease (RNase) T1 represents a simple, yet most rewarding model for studying protein-nucleic acid interaction. The isolation of the enzyme from Takadiastase, a commercial preparation of the culture medium of the mould fungus Aspergillus oryzae, was first described by Sato and Egami (1957). Since then, RNase T1 has received much attention as a tool in molecular biology, notably for RNA sequencing (Donis-Keller et al., 1977; Simoncsits et al., 1911; Silberklang et al., 1979) and mapping (e.g. Epstein et al., 1981; Nohga et al., 1981; Nomoto et al., 1981; Stackebrandt et al., 1981; Stewart and Crouch, 1981). RNase T1 has also been used to catalyse the formation of phosphodiester bonds in RNA (Podder, 1970).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aphanasenko, G. A., Dudkin, S. M., Kaminir, L. B., Leshchinskaya, I. B. and Severin, E. S. (1979). Primary structure of ribonuclease from Bacillus intermedius 7P. FEBS Letters, 97, 77–80CrossRefPubMedGoogle Scholar
  2. Ami, R., Heinemann, U., Maslowska, M., Tokuoka, R. and Saenger, W. (1987). Restrained least-squares refinement of the crystal structure of the ribonuclease T1*2′-guanylic acid complex at 1.9 Å resolution. Acta Cryst., B43, 548–554Google Scholar
  3. Arni, R., Heinemann, U., Tokuoka, R. and Saenger, W. (1988). Three-dimensional structure of the ribonuclease T1*2′GMP complex at 1.9 Å resolution. J. Biol. Chem., 263, 15358–15368PubMedGoogle Scholar
  4. Bezborodova, S. I., Khodova, O. M. and Stepanov, V. M. (1983). The complete amino acid sequence of ribonuclease C2 from Aspergillus clavatus. FEBS Letters, 159, 256–258CrossRefGoogle Scholar
  5. Blackburn, P. and Moore, S. (1982). Pancreatic ribonuclease. The Enzymes, 15, 317–433CrossRefGoogle Scholar
  6. Chen, L. X-Q., Longworth, J. W. and Fleming, G. R. (1987). Picosecond time-resolved fluorescence of ribonuclease T1. Biophys. J., 51, 865–873CrossRefPubMedCentralPubMedGoogle Scholar
  7. Donis-Keller, H., Maxam, A. M. and Gilbert, W. (1977). Mapping adenines, guanines, and pyrimidines in RNA. Nucleic Acids Res., 4, 2527–2538CrossRefPubMedCentralPubMedGoogle Scholar
  8. Eckstein, F., Schulz, H. H., Rüterjans, H., Haar, W. and Maurer, W. (1972). Stereochemistry of the transesterification step of ribonuclease T1. Biochemistry, 11, 3507–3512CrossRefPubMedGoogle Scholar
  9. Eftink, M. R. and Ghiron, C. A. (1975). Dynamics of a protein matrix revealed by fluorescence quenching. Proc. Natl Acad. Sci. USA, 72, 3290–3294CrossRefPubMedCentralPubMedGoogle Scholar
  10. Eftink, M. R. (1983). Quenching resolved fluorescence anisotropy studies with single and multi-tryptophan containing proteins. Biophys. J., 43, 323–334CrossRefPubMedCentralPubMedGoogle Scholar
  11. Eftink, M. R. and Ghiron, C.A. (1987). Frequency domain measurements of the fluorescence lifetime of ribonuclease T1. Biophys. J., 52, 467–473CrossRefPubMedCentralPubMedGoogle Scholar
  12. Egami, F., Oshima, T. and Uchida, T. (1980). Specific interaction of base-specific nucleases with nucleosides and nucleotides. Mol. Biol. Biochem. Biophys., 32, 250–277Google Scholar
  13. Epstein, P., Reddy, R. and Busch, H. (1981). Site-specific cleavage by T1 RNase of U-1 RNA in U-1 ribonucleoprotein particles. Proc. Natl Acad. Sci. USA, 78, 1562–1566CrossRefPubMedCentralPubMedGoogle Scholar
  14. Finzel, B. C. (1987). Incorporation of fast Fourier transforms to speed restrained least-squares refinement of protein structures. J. Appl. Cryst., 20, 53–55CrossRefGoogle Scholar
  15. Fukunaga, Y., Tamaoki, H., Sakiyama, F. and Narita, K. (1982). The role of the single tryptophane residue in the structure and function of ribonuclease T1. J. Biochem., 92, 143–153PubMedGoogle Scholar
  16. Fukunaga, Y. and Sakiyama, F. (1982). Fluorescence titrations of residue 59 and tyrosine in Kyn 59-RNase T1 and NFK 59-RNase T1. J. Biochem., 92, 155–161PubMedGoogle Scholar
  17. Hartley, R. W. and Barker, E. A. (1972). Amino-acid sequence of extracellular ribonuclease (barnase) of Bacillus amyloliquefaciens. Nature New Biol., 235, 15–16CrossRefPubMedGoogle Scholar
  18. Hartley, R. W. (1980). Homology between prokaryotic and eukaryotic ribonucleases. J. Mol. Evol., 15, 355–358CrossRefPubMedGoogle Scholar
  19. Heinemann, U., Wernitz, M., Pähler, A., Saenger, W., Menke, G. and Rüterjans, H. (1980). Crystallization of a complex between ribonuclease T1 and 2′-guanylic acid. Eur. J. Biochem., 109, 109–114CrossRefPubMedGoogle Scholar
  20. Heinemann, U. (1982). Dreidimensionale Strukturen des Calotropin DI und des Komplexes aus Ribonuclease T1 und Guanosin-2′-monophosphat. Thesis, University of GöttingenGoogle Scholar
  21. Heinemann, U. and Saenger, W. (1982). Specific protein-nucleic acid recognition in ribonuclease T1-2′-guanylic acid complex: an X-ray study. Nature, 299, 27–31CrossRefPubMedGoogle Scholar
  22. Heinemann, U. and Saenger, W. (1983). Crystallographic study of mechanism of ribonuclease T1-catalysed specific RNA hydrolysis. J. Biomol. Struct. Dyn., 1, 523–538CrossRefPubMedGoogle Scholar
  23. Hendrickson, W. A. (1985). Stereochemically restrained refinement of macromolecular structures. Methods Enzymol., 115, 252–270CrossRefPubMedGoogle Scholar
  24. Hershberger, M. V., Maki, A. H. and Galley, W. C. (1980). Phosphorescence and optically detected magnetic resonance studies of a class of anomalous tryptophan residues in globular proteins. Biochemistry, 19, 2204–2209CrossRefPubMedGoogle Scholar
  25. Hill, C., Dodson, G., Heinemann, U., Saenger, W., Mitsui, Y., Nakamura, K., Borisov, S., Tischenko, G., Polyakov, K. and Pavlovsky, S. (1983). The structural and sequence homology of a family of microbial ribonucleases. Trends Biochem. Sci., 8, 364–369CrossRefGoogle Scholar
  26. Hirabayashi, J. and Yoshida, H. (1983). The primary structure of ribonuclease Fl from Fusarium moniliforme. Biochem. Internat., 7, 255–262Google Scholar
  27. Ikehara, M., Ohtsuka, E., Tokunaga, T. et al. (1986). Inquiries into the structure-function relationship of ribonuclease T1 using chemically synthesized coding sequences. Proc. Natl Acad. Sci. USA, 83, 4695–4699CrossRefPubMedCentralPubMedGoogle Scholar
  28. Ikehara, M., Ohtsuka, E., Tokunaga, T. et al. (1987). Synthesis and properties of ribonuclease T1 and its mutants. In Bruzik, K. S. and Stec, W. J. (eds), Biophosphates and Their Analogues — Synthesis, Structure, Metabolism and Activity, Elsevier, Amsterdam, 335–344Google Scholar
  29. Imakubo, K. and Kai, Y. (1977). Phosphorescence of ribonuclease T1 in solution at 293 K. J. Phys. Soc. Japan, 42, 1431–1432CrossRefGoogle Scholar
  30. Inagaki, F., Kawano, Y., Shimada, I., Takahashi, K. and Miyazawa, T. (1981). Nuclear magnetic resonance study on the microenvironments of histidine residues of ribonuclease T1 and carboxymethylated ribonuclease T1. J. Biochem., 89, 1185–1195PubMedGoogle Scholar
  31. Inagaki, F., Shimada, I. and Miyazawa, T. (1985). Binding modes of inhibitors to ribonuclease T1 as studied by nuclear magnetic resonance. Biochemistry, 24, 1013–1020CrossRefPubMedGoogle Scholar
  32. Inagaki, F. and Shimada, I. (1986). Hexacyanochromate ion as a paramagnetic anion probe for active sites of enzymes. J. Inorg. Biochem., 28, 311–317CrossRefPubMedGoogle Scholar
  33. James, D. R., Demmer, D. R., Steer, R. P. and Verall, R. E. (1985). Fluorescence lifetime quenching and anisotropy studies of ribonuclease T1. Biochemistry, 24, 5517–5526CrossRefPubMedGoogle Scholar
  34. Jones, T. A. (1978). A graphics model building and refinement system for macromolecules. J. Appl. Cryst., 11, 268–272CrossRefGoogle Scholar
  35. Kanaya, S. and Uchida, T. (1986). Comparison of primary structures of ribonuclease U2 isoforms. Biochem. J., 240, 163–170CrossRefPubMedCentralPubMedGoogle Scholar
  36. Khorana, H. G., Agarwal, K. L., Büchi, H., Caruthers, M. H., Gupta, N. K., Kleppe, K., Kumar, A., Ohtsuka, E., Raj Bhandary, U. L., van de Sande, J. H., Sgaramella, V., Terao, T., Weber, H. and Yamada, T. (1972). Studies on polynucleotides. CIII. Total synthesis of the transfer ribonucleic acid from yeast. J. Mol. Biol., 72, 209–217CrossRefPubMedGoogle Scholar
  37. Kyogoku, Y., Watanabe, M., Kainosho, M. and Oshima, T. (1982). A 15N-NMR study on ribonuclease T1-guanylic acid complex. J. Biochem., 91, 675–679PubMedGoogle Scholar
  38. Lakowicz, J. R., Maliwal, B. P., Cherek, H. and Balter, A. (1983). Rotational freedom of tryptophan residues in proteins and peptides. Biochemistry, 22, 1741–1752CrossRefPubMedGoogle Scholar
  39. Lang, K., Schmid, F. X. and Fischer, G. (1987). Catalysis of protein folding by prolyl isomerase. Nature, 329, 268–270CrossRefPubMedGoogle Scholar
  40. Lesk, A. M. and Hardman, K. D. (1982). Computer-generated schematic diagrams of protein structures. Science, 216, 539–540CrossRefPubMedGoogle Scholar
  41. Longworth, J. W. (1968). Excited state interactions in macromolecules. Photochem. Photo-biol., 7, 587–596CrossRefGoogle Scholar
  42. MacKerell, A. D., Rigler, R., Hahn, U. and Saenger, W. (1987a). Ribonuclease T1: Interaction with 2′GMP and 3′GMP as studied by time-resolved fluorescence spectroscopy. In Ehrenberg, A., Rigler, R., Gräslund, A. and Nilsson, L. (eds), Structure Dynamics and Function of Biomolecules, Springer, Berlin, Heidelberg, 260–265CrossRefGoogle Scholar
  43. MacKerell, A. D., Jr, Rigler, R., Nilsson, L., Hahn, U. and Saenger, W. (1987b). A time-resolved fluorescence, energetic and molecular dynamics study of ribonuclease T1. Biophys. Chem., 26, 247–261CrossRefPubMedGoogle Scholar
  44. Martin, P. D., Tulinsky, A. and Walz, F. G., Jr (1980). Crystallization of ribonuclease T1. J. Mol. Biol., 136, 95–97CrossRefPubMedGoogle Scholar
  45. Maslowska, M. (1988). Thesis, Free University of BerlinGoogle Scholar
  46. Mauguen, Y., Hartley, R. W., Dodson, E. J., Dodson, G. G., Bricogne, G., Chothia, C. and Jack, A. (1982). Molecular structure of a new family of ribonucleases. Nature, 297, 162–164CrossRefPubMedGoogle Scholar
  47. Nagai, H., Kawata, Y., Hayashi, F., Sakiyama, F. and Kyogoku, Y. (1985). An exposed tyrosine residue of RNase T1 and its involvement in the interaction with guanylic acid. FEBS Letters, 189, 167–170CrossRefGoogle Scholar
  48. Nakamura, K. T., Iwahashi, K., Yamamoto, Y., Iitaka, Y., Yoshida, N. and Mitsui, Y. (1982). Crystal structure of a microbial ribonuclease, RNase St. Nature, 299, 564–566CrossRefPubMedGoogle Scholar
  49. Nishikawa, S., Morioka, H., Fuchimura, K., Tanaka, T., Uesugi, S., Ohtsuka, E. and Ikehara, M. (1986). Modification of Glu58, an amino acid of the active center of ribonuclease T1, to Gln and Asp. Biochem. Biophys. Res. Commun., 138, 789–794CrossRefPubMedGoogle Scholar
  50. Nishikawa, S., Morioka, H., Kim, H. J., Fuchimura, K., Tanaka, T., Uesugi, S., Hako-shima, T., Tomita, K., Ohtsuka, E. and Ikehara, M. (1987). Two histidine residues are essential for ribonuclease T1 activity as is the case for ribonuclease A. Biochemistry, 26, 8620–8624CrossRefPubMedGoogle Scholar
  51. Nishikawa, S., Kimura, T., Morioka, H., Uesugi, S., Hakoshima, T., Tomita, K., Ohtsuka, E. and Ikehara, M. (1988). Glu 46 of ribonuclease T1 is an essential residue for the recognition of guanine base. Biochem. Biophys. Res. Commun., 150, 68–74CrossRefPubMedGoogle Scholar
  52. Nohga, K., Reddy, R. and Busch, H. (1981). Comparison of RNase T1 fingerprints of U1, U2, and U3 small nuclear RNA′s of HeLa cells, human normal fibroblasts, and Novikoff hepatoma cells. Cancer Res., 41, 2215–2220PubMedGoogle Scholar
  53. Nomoto, A., Kitamura, N., Lee, J. J., Rothberg, P. G., Imura, N. and Wimmer, E. (1981). Identification of point mutations in the genome of the polio virus sabin vaccine LSc 2ab, and catalogue of RNase T1- and RNase A-resistant oligonucleotides of poliovirus type 1 (Mahoney) RNA. Virology, 112, 217–227CrossRefPubMedGoogle Scholar
  54. Oobatake, M., Takahashi, S. and Ooi, T. (1979a). Conformational stability of ribonuclease T1. I. Thermal denaturation and effects of salts. J. Biochem., 86, 55–63PubMedGoogle Scholar
  55. Oobatake, M., Takahashi, S. and Ooi, T. (1979b). Conformational stability of ribonuclease T1. II. Salt-induced renaturation. J. Biochem., 86, 65–70PubMedGoogle Scholar
  56. Osterman, H. L. and Walz, F. G., Jr (1978). Subsites and catalytic mechanism of ribonuclease T1: kinetic studies using GpA, GpC, GpG, and GpU as substrates. Biochemistry, 17, 4124–4130CrossRefPubMedGoogle Scholar
  57. Osterman, H. L. and Walz, F. G., Jr (1979). Subsite interactions and ribonuclease T1 catalysis: kinetic studies with ApGpC and ApGpU. Biochemistry, 18, 1984–1988CrossRefPubMedGoogle Scholar
  58. Pace, C. N. and Barrett, A. J. (1984). Kinetics of tryptic hydrolysis of the arginine-valine bond in folded and unfolded ribonuclease T1. Biochem. J., 219, 411–417CrossRefPubMedCentralPubMedGoogle Scholar
  59. Pace, C. N. and Creighton, T. E. (1986). The disulphide folding pathway of ribonuclease T1. J. Mol. Biol., 188, 477–486CrossRefPubMedGoogle Scholar
  60. Pace, C. N. and Grimsley, G. R. (1988). Ribonuclease T1 is stabilized by cation and anion binding. Biochemistry, 21, 3242–3246CrossRefGoogle Scholar
  61. Pavlovsky, A. G., Borisova, S. B., Strokopytov, B. V., Sanishvili, R. G., Vagin, A. A. and Chepurnova, N. K. (1987). Structure bases for nucleotide recognition by guanyl-specific ribonucleases. In Zelinka, J. and Balan, J. (eds), Metabolism and Enzymology of Nucleic Acids Including Gene Manipulations, vol. 6, Slovak Academy of Sciences, Bratislava, 81–96Google Scholar
  62. Pavlovsky, A. G., Vagin, A. A., Vainstein, N. K., Chepurnova, N. K. and Karpeisky, M. Y. (1983). Three-dimensional structure of ribonuclease from Bacillus intermedius 7P at 3.2 Å resolution. FEBS Letters, 162, 167–170CrossRefPubMedGoogle Scholar
  63. Podder, S. K. (1970). Synthetic action of ribonuclease T1. Biochim. Biophys. Acta, 209, 455–462CrossRefPubMedGoogle Scholar
  64. Polyakov, K. M., Vagin, A. A., Tishchenko, G. N. and Bezborodova, S. I. (1984). X-ray structural studies of ribonuclease C2 from Aspergillus clavatus and its complex with 2′-GMP. In Zelinka, J. and Balan, J. (eds), Metabolism and Enzymology of Nucleic Acids Including Gene Manipulations, vol. 5, Slovak Academy of Sciences, Bratislava, 131–138Google Scholar
  65. Polyakov, K. M., Strokopytov, B. V., Vagin, A. A., Bezborodova, S. I. and Orna, L. (1987a). Three-dimensional structure of RNase C2 from Aspergillus clavatus at 1.35 Å resolution. In Zelinka, J. and Balan, J. (eds), Metabolism and Enzymology of Nucleic Acids Including Gene Manipulations, vol. 6, Slovak Academy of Sciences, Bratislava, 335–340Google Scholar
  66. Polyakov, K. M., Strokopytov, B. V., Vagin, A. A., Bezborodova, S. I. and Shlyapnikov, S. V. (1987b). Crystallization and preliminary X-ray structural studies of RNase Thl from Trichoderma harzianum. In Zelinka, J. and Balan, J. (eds), Metabolism and Enzymology of Nucleic Acids Including Gene Manipulations, vol. 6, Slovak Academy of Sciences, Bratislava, 331–334Google Scholar
  67. Pongs, O. (1970). Influences of pH and substrate analogs on ribonuclease T1 fluorescence. Biochemistry, 9, 2316–2321CrossRefPubMedGoogle Scholar
  68. Ouaas, R., Choe, H-W., Hahn, U., McKeown, Y., Stanssens, P., Zabeau, M., Frank, R. and Blöcker, H. (1987). Protein design — a tool for understanding enzyme action: chemical synthesis of a gene for ribonuclease T1. In Bruzik, K. S. and Stec, W. J. (eds), Biophosphates and Their Analogues — Synthesis, Structure, Metabolism and Activity, Elsevier, Amsterdam, 345–348Google Scholar
  69. Ouaas, R., McKeown, Y., Stanssens, P., Frank, R., Blöcker, H. and Hahn, U. (1988a). Expression of the chemically synthesized gene for ribonuclease T1 in Escherichia coli using a secretion cloning vector. Eur. J. Biochem., 173, 617–622CrossRefGoogle Scholar
  70. Quaas, R., Grunert, H.-P., Kimura, M. and Hahn, U. (1988b). Expression of ribonuclease T1 in Escherichia coli and rapid purification of the enzyme. Nucleosides & Nucleotides, in pressGoogle Scholar
  71. Richards, F. M. and Wyckoff, H. W. (1971). Bovine pancreatic ribonuclease. The Enzymes, 4, 647–806CrossRefGoogle Scholar
  72. Röterjans, H., Hoffmann, E., Schmidt, J. and Simon, J. (1987). Two-dimensional 1H-NMR investigation of ribonuclease T1 and the complexes of RNase T1 with 2′- and 3′-guanosine monophosphate. In Zelinka, J. and Balan, J. (eds), Metabolism and Enzymology of Nucleic Acids Including Gene Manipulations, vol. 6, Slovak Academy of Sciences, Bratislava, 81–96Google Scholar
  73. Sacco, G., Drickamer, K. and Wool, I. G. (1983). The primary structure of the cytotoxin α-sarcin. J. Biol. Chem., 258, 5811–5818PubMedGoogle Scholar
  74. Saenger, W. (1984). Principles of Nucleic Acid Structure, Springer, New York, 76–78CrossRefGoogle Scholar
  75. Sato, K. and Egami, F. (1957). Studies on ribonucleases in Takadiastase. J. Biochem., 44, 753–767Google Scholar
  76. Sato, S. and Uchida, T. (1975). The amino acid sequence of ribonuclease U2 from Ustilago sphaerogena. Biochem. J., 145, 353–360CrossRefPubMedCentralPubMedGoogle Scholar
  77. Sevcik, J., Dodson, E. J., Dodson, G. G. and Zelinka, J. (1987). The X-ray analysis of ribonuclease Sa. In Zelinka, J. and Balan, J. (eds), Metabolism and Enzymology of Nucleic Acids Including Gene Manipulations, vol. 6, Slovak Academy of Sciences, Bratislava, 33–45Google Scholar
  78. Shlyapnikov, S. V., Kulikov, V. A. and Yakovlev, G. I. (1984). Amino acid sequence and S-S bonds of Penicillium brevicompactum guanyl-specific ribonuclease. FEBS Letters, 177, 246–248CrossRefPubMedGoogle Scholar
  79. Shlyapnikov, S. V., Bezborodova, S. I., Kulikov, V. A. and Yakovlev, G. I. (1986a). Express analysis of protein amino acid sequences. Primary structure of Penicillium chrysogenum 152A guanyl-specific ribonuclease. FEBS Letters, 196, 29–33CrossRefPubMedGoogle Scholar
  80. Shlyapnikov, S. V., Both, V., Kulikov, V. A., Dementiev, A. A., Sevcik, J. and Zelinka, J. (1986b). Amino acid sequence determination of guanyl-specific ribonuclease Sa from Streptomyces aureofaciens. FEBS Letters, 209, 335–339CrossRefPubMedGoogle Scholar
  81. Silberklang, M., Gillum, A. M. and Raj Bhandary, U. L. (1979). Use of in vitro 32P labeling in the sequence analysis of nonradioactive tRNAs. Methods Enzymol., 59, 58–109CrossRefPubMedGoogle Scholar
  82. Simoncsits, A., Brownlee, G. G., Brown, R. S., Rubin, J. R. and Guilley, H. (1977). New rapid gel sequencing method for RNA. Nature, 269, 833–836CrossRefPubMedGoogle Scholar
  83. Stackebrandt, E., Ludwig, W., Schleifer, K-H. and Gross, H. J. (1981). Rapid cataloguing of ribonuclease T1 resistant oligonucleotides from ribosomal RNAs for phylogenetic studies. J. Mol. Evol., 17, 227–236CrossRefPubMedGoogle Scholar
  84. Stewart, M. L. and Crouch, R. J. (1981). Sensitive and rapid analysis of T1-ribonuclease-resistant oligonucleotides in two-dimensional fingerprinting gels of poliovirus type I genomic RNA. Analyt. Biochem., 111, 203–211CrossRefPubMedGoogle Scholar
  85. Sugio, S., Amisaki, T., Ohishi, H., Tomita, K-I., Heinemann, U. and Saenger, W. (1985a). pH-induced change in nucleotide binding geometry in the ribonuclease T1-2′-guanylic acid complex. FEBS Letters, 181, 129–132CrossRefGoogle Scholar
  86. Sugio, S., Oka, K-I., Ohishi, H., Tomita, K-I, and Saenger, W. (1985b). Three-dimensional structure of the ribonuclease T1*3′-guanylic acid complex at 2.6 Å resolution. FEBS Letters, 183, 115–118CrossRefPubMedGoogle Scholar
  87. Sugio, S., Amisaki, T., Ohishi, H. and Tomita, K.-I. (1988). Refined X-ray structure of the low pH form of ribonuclease T1-2′-guanylic acid complex at 1.9 Å resolution. J. Biochem., 103, 354–366PubMedGoogle Scholar
  88. Takahashi, K. (1970). The structure and function of ribonuclease T1. IX. Photooxidation of ribonuclease T1 in the presence of Rose Bengal. J. Biochem., 67, 833–839PubMedGoogle Scholar
  89. Takahashi, K. (1971). The structure and function of ribonuclease T1. XV. Amino acid sequence of chymotryptic peptides from performic acid-oxidized and heat-denatured ribonuclease T1 — the complete amino acid sequence of ribonuclease T1. J. Biochem., 70, 617–634PubMedGoogle Scholar
  90. Takahashi, K. (1974). Effects of temperature, salts, and solvents on the enzymatic activity of ribonuclease T1. J. Biochem., 75, 201–204PubMedGoogle Scholar
  91. Takahashi, K. and Moore, S. (1982). Ribonuclease T1. The Enzymes, 15, 435–468CrossRefGoogle Scholar
  92. Takahashi, K. (1985). A revision and confirmation of the amino acid sequence of ribonuclease T1. J. Biochem., 98, 815–817PubMedGoogle Scholar
  93. Takahashi, K. and Hashimoto, J. (1988). The amino acid sequence of ribonuclease U1, a guanine-specific ribonuclease from the fungus Ustilago sphaerogena. J. Biochem., 103, 313–320PubMedGoogle Scholar
  94. Uchida, T. and Egami, F. (1971). Microbial ribonucleases with special reference to RNase T1, T2, N1, and U2. The Enzymes, 4, 205–250CrossRefGoogle Scholar
  95. Usher, D. A. (1969). On the mechanism of ribonuclease action. Proc. Natl Acad. Sci. USA, 62, 661–667CrossRefPubMedCentralPubMedGoogle Scholar
  96. Walz, F. G., Jr, Osterman, H. L. and Libertin, C. (1979). Base-group specificity and the primary recognition site of ribonuclease T1 for minimal RNA substrates. Arch. Biochem. Biophys., 195, 95–102CrossRefPubMedGoogle Scholar
  97. Watanabe, H., Ohgi, K. and Irie, M. (1982). Primary structure of a minor ribonuclease from Aspergillus saitoi. J. Biochem., 91, 1495–1509PubMedGoogle Scholar
  98. Watanabe, H., Ando, E., Ohgi, K. and Irie, M. (1985). The subsite structures of guanine-specific ribonucleases and a guanine-preferential ribonuclease. Cleavage of oligo-inosinic acids and poly I. J. Biochem., 98, 1239–1245PubMedGoogle Scholar
  99. White, M. D., Rapoport, S. and Lapidot, Y. (1977). Guanylyl 2′–5′ guanosine as an inhibitor of ribonuclease T1. Biochem. Biophys. Res. Commun., 77, 1084–1087CrossRefPubMedGoogle Scholar
  100. Whitfeld, P. R. and Witzel, H. (1963). On the mechanism of action of Takadiastase ribonuclease T1. Biochim. Biophys. Acta, 11, 338–341CrossRefGoogle Scholar
  101. Wlodawer, A. (1985). Structure of bovine pancreatic ribonuclease by X-ray and neutron diffraction. In Jurnak, F. A. and McPherson, A. (eds), Biological Macromolecules & Assemblies, Vol. 2, Nucleic Acids and Interactive Proteins, Wiley, New York, 393–439Google Scholar
  102. Wüthrich, K. (1986). NMR of Proteins and Nucleic Acids, Wiley, New YorkGoogle Scholar
  103. Yamagata, S., Takahashi, K. and Egami, F. (1962). The structure and function of ribonuclease T1. VI. Reduction of disulfide bonds of ribonuclease T1. J. Biochem., 52, 272–274Google Scholar
  104. Yoshida, N., Sasaki, A., Rashid, M. A. and Otsuka, H. (1976). The amino acid sequence of ribonuclease St. FEBS Letters, 64, 122–125CrossRefPubMedGoogle Scholar
  105. Zabinsky, M. and Walz, F. G., Jr (1976). Subsites and catalytic mechanism of ribonuclease T1: Kinetic studies using GpC and GpU as substrates. Arch. Biochem. Biophys., 175, 558–564CrossRefGoogle Scholar

Copyright information

© The Contributors 1989

Authors and Affiliations

There are no affiliations available

Personalised recommendations