Advertisement

Protein-nucleic acid interactions in tobacco mosaic virus

Chapter
  • 26 Downloads
Part of the Topics in Molecular and Structural Biology book series (TMSB)

Abstract

Tobacco mosaic virus (TMV), a positive-strand RNA virus, provides a unique perspective on nucleic acid structure, in that it has been for some years the only macromolecular assembly in which the structure of a ribonucleic acid interacting with a protein has been visualized in molecular detail, and one of the very few showing protein-nucleic acid interactions at all. Crystallographers have determined the structures of a number of spherical RNA viruses (for references see Liljas, 1986; Stubbs, 1989); but in those structures so far determined, the nucleic acid is not seen in the electron density maps, because it does not conform to the icosahedral symmetry of the coat proteins. TMV, by contrast, is a helical virus, and its RNA is well ordered, with the same symmetry as the protein. It is the type member of the tobamovirus group, rod-shaped viruses 3000 Å long and 180 Å in diameter, with a central hole of diameter 40 Å. Approximately 2130 identical protein subunits of molecular weight 17500 form a right-handed helix of pitch 23Å with 49 subunits in 3 turns. A single strand of RNA follows the basic helix between the protein subunits at a radius of 40 Å, with three nucleotides bound to each protein subunit. An overall view of part of the viral rod is shown in Figure 5.1.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdallah, M. A., Biellmann, J. F., Nordström, B. and Brändén, C.-I. (1975). The conformation of adenosine diphosphoribose and 8-bromoadenosine diphosphoribose when bound to liver alcohol dehydrogenase. Eur. J. Biochem., 50, 475–481CrossRefPubMedGoogle Scholar
  2. Ahlquist, P., Strauss, E. G., Rice, C. M., Strauss, J. H., Haseloff, J. and Zimmern, D. (1985). Sindbis virus proteins nsP1 and nsP2 contain homology to nonstructural proteins from several RNA plant viruses. J. Virology, 53, 536–542PubMedPubMedCentralGoogle Scholar
  3. Altona, C. and Sundaralingam, M. (1972). Conformational analysis of the sugar ring in nucleosides and nucleotides. A new description using the concept of pseudorotation. J. Amer. Chem. Soc., 94, 8205–8212CrossRefGoogle Scholar
  4. Atabekov, J. G., Novikov, V. K., Vishnichenko, V. K. and Kaftanova, A. S. (1970). Some properties of hybrid viruses reassembled in vitro. Virology, 41, 519–532Google Scholar
  5. Bawden, F. C. and Pirie, N. W. (1937). The isolation and some properties of liquid crystalline substances from solanaceous plants infected with three strains of tobacco mosaic virus. Proc. R. Soc. London, Ser. B, 123, 274–320CrossRefGoogle Scholar
  6. Beachy, R. N., Zaitlin, M., Bruening, G. and Israel, H. W. (1976). A genetic map for the cowpea strain of TMV. Virology, 73, 498–507CrossRefPubMedGoogle Scholar
  7. Beachy, R. N. and Zaitlin, M. (1977). Characterization and in vitro translation of the RNAs from less-than-full-length, virus-related, nucleoprotein rods present in tobacco mosaic virus preparations. Virology, 81, 160–169CrossRefPubMedGoogle Scholar
  8. Bernal, J. D. and Fankuchen, I. (1941). X-ray and crystallographic studies of plant virus preparations. J. Gen. Physiol., 25, 111–165CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bloomer, A. C. and Butler, P. J. G. (1986). Tobacco mosaic virus. Structure and self-assembly. In Van Regenmortel, M. H. V. and Fraenkel-Conrat, H. (eds), The Plant Viruses, vol. 2, Plenum, New York, 19–57CrossRefGoogle Scholar
  10. Bloomer, A. C., Champness, J. N., Bricogne, G., Staden, R. and Klug, A. (1978). Protein disk of tobacco mosaic virus at 2.8 Å resolution showing the interactions within and between subunits. Nature, 276, 362–368CrossRefPubMedGoogle Scholar
  11. Bloomer, A. C., Graham, J., Hovmöller, S., Butler, P. J. G. and Klug, A. (1981). Tobacco mosaic virus: interaction of the protein disk with nucleotides and its implications for virus structure and assembly. In Balaban, M., Sussman, J. L., Traub, W. and Yonath, A. (eds), Structural Aspects of Recognition and Assembly in Biological Macromolecules, Balaban ISS, Rehovot and Philadelphia, 851–864Google Scholar
  12. Bruening, G., Beachy, R. N., Scalla, R. and Zaitlin, M. (1976). In vitro and in vivo translation of the ribonucleic acids of a cowpea strain of tobacco mosaic virus. Virology, 71, 498–517CrossRefPubMedGoogle Scholar
  13. Butler, P. J. G. (1972). Structures and roles of the polymorphic forms of tobacco mosaic virus protein. VI. Assembly of the nucleoprotein rods of tobacco mosaic virus from the protein disks and RNA. J. Mol. Biol., 72, 25–35CrossRefPubMedGoogle Scholar
  14. Butler, P. J. G. (1974). Structures and roles of the polymorphic forms of tobacco mosaic virus protein. IX. Initial stages of assembly of nucleoprotein rods from virus RNA and the protein disks. J. Mol. Biol., 82, 343–353CrossRefPubMedGoogle Scholar
  15. Butler, P. J. G. (1984). The current picture of the structure and assembly of tobacco mosaic virus. J. Gen. Virol., 65, 253–279CrossRefPubMedGoogle Scholar
  16. Butler, P. J. G. and Durham, A. C. H. (1977). Tobacco mosaic virus protein aggregation and the virus assembly. Adv. Protein Chem., 31, 187–251CrossRefPubMedGoogle Scholar
  17. Butler, P. J. G. and Klug, A. (1971). Assembly of the particle of tobacco mosaic virus from RNA and disks of protein. Nature New Biol., 229, 47–50CrossRefPubMedGoogle Scholar
  18. Butler, P. J. G., Bloomer, A. C., Bricogne, G., Champness, J. N., Graham, J., Guilley, H., Klug, A. and Zimmern, D. (1976). Tobacco mosaic virus assembly — specificity and the transition in protein structure during RNA packaging. In Markham, R. and Horne, R. W. (eds), Structure-Function Relationships of Proteins, North Holland, Amsterdam, 101–110Google Scholar
  19. Butler, P. J. G., Finch, J. T. and Zimmern, D. (1977). Configuration of tobacco mosaic virus RNA during virus assembly. Nature, 265, 217–219CrossRefPubMedGoogle Scholar
  20. Carriquiry, E. and Litvak, S. (1974). Further studies on the enzymatic aminoacylation of TMV-RNA by histidine. FEBS Lett., 38, 287–291CrossRefPubMedGoogle Scholar
  21. Caspar, D. L. D. (1963). Assembly and stability of the tobacco mosaic virus particle. Adv. Protein Chem., 18, 37–121CrossRefPubMedGoogle Scholar
  22. Caspar, D. L. D. (1976). Switching in the self-control of self-assembly. In Markham, R. and Horne, R. W. (eds), Structure-Function Relationships of Proteins, North Holland, Amsterdam, 85–89Google Scholar
  23. Champness, J. N., Bloomer, A. C., Bricogne, G., Butler, P. J. G. and Klug, A. (1976). The structure of the protein disk of tobacco mosaic virus to 5 Å resolution. Nature, 259, 20–24CrossRefPubMedGoogle Scholar
  24. Correia, J. J., Shire, S., Yphantis, D. A. and Schuster, T. M. (1985). Sedimentation equilibrium measurements of the intermediate-size tobacco mosaic virus protein polymers. Biochemistry, 24, 3292–3297CrossRefPubMedGoogle Scholar
  25. Cotton, F. A., Hazen, E. E. and Legg, M. J. (1979). Staphylococcal nuclease: proposed mechanism of action based on structure of enzyme-thymidine 3′,5′-bisphosphate-calciumion complex at 1.5 Å resolution. Proc. Natl Acad. Sci. USA, 76, 2551–2555CrossRefPubMedPubMedCentralGoogle Scholar
  26. Dodds, J. A. and Hamilton, R. I. (1976). Structural interactions between viruses as a consequence of mixed infections. Adv. Virus Res., 20, 33–86CrossRefPubMedGoogle Scholar
  27. Einspahr, H. and Bugg, C. E. (1984). Crystal structure studies of calcium complexes and implications for biological systems. In Siegel, H. (ed.), Metal Ions in Biological Systems, vol. 17: Calcium and Its Role in Biology, Dekker, New York, 51–97Google Scholar
  28. Fraenkel-Conrat, H. and Singer, B. (1964). Reconstitution of tobacco mosaic virus. IV. Inhibition by enzymes and other proteins, and use of polynucleotides. Virology, 23, 354–362CrossRefPubMedGoogle Scholar
  29. Fraenkel-Conrat, H. and Williams, R. C. (1955). Reconstitution of active tobacco mosaic virus from its inactive protein and nucleic acid components. Proc. Natl Acad. Sci. USA, 41, 690–698CrossRefPubMedPubMedCentralGoogle Scholar
  30. Frist, R. H. (1968). Organized structures assembled in vitro from cowpea chlorotic mottle virus protein. Biophys. J., 8, A69Google Scholar
  31. Fritsch, C., Stussi, C., Witz, J. and Hirth, L. (1973). Specificity of TMV RNA encapsidation: in vitro coating of heterologous RNA by TMV protein. Virology, 56, 33–45CrossRefPubMedGoogle Scholar
  32. Fukuda, M., Ohno, T., Okada, Y., Otsuki, Y. and Takebe, I. (1978). Kinetics of biphasic reconstitution of tobacco mosaic virus in vitro. Proc. Natl Acad. Sci. USA, 75, 1727–1730CrossRefPubMedPubMedCentralGoogle Scholar
  33. Fukuda, M., Okada, Y., Otsuki, Y. and Takebe, I. (1980). The site of initiation of rod assembly on the RNA of a tomato and a cowpea strain of tobacco mosaic virus. Virology, 101, 493–502CrossRefPubMedGoogle Scholar
  34. Fukuda, M., Meshi, T., Okada, Y., Otsuki, Y. and Takebe, I. (1981). Correlation between particle multiplicity and location on virion RNA of the assembly initiation site for viruses of the tobacco mosaic virus group. Proc. Natl Acad. Sci. USA, 78, 4231–4235CrossRefPubMedPubMedCentralGoogle Scholar
  35. Gallagher, W. H. and Lauffer, M. A. (1983). Calcium ion binding by tobacco mosaic virus. J. Mol. Biol., 170, 905–919CrossRefPubMedGoogle Scholar
  36. Gallie, D. R., Sleat, D. E., Watts, J. W., Turner, P. C. and Wilson, T. M. A. (1987a). In vivo uncoating and efficient expression of foreign mRNAs packaged in TMV-like particles. Science, 236, 1122–1124CrossRefPubMedGoogle Scholar
  37. Gallie, D. R., Sleat, D. E., Watts, J. W., Turner, P. C. and Wilson, T. M. A. (1987b). The 5′-leader sequence of tobacco mosaic virus RNA enhances the expression of foreign gene transcripts in vitro and in vivo. Nucleic Acids Res., 15, 3257–3273CrossRefPubMedPubMedCentralGoogle Scholar
  38. Gallie, D. R., Piaskitt, K. A. and Wilson, T. M. A. (1987c). The effect of multiple dispersed copies of the origin-of-assembly sequence from TMV RNA on the morphology of pseudovirus particles assembled in vitro. Virology, 158, 473–476CrossRefPubMedGoogle Scholar
  39. Goelet, P., Lomonossoff, G. P., Butler, P. J. G., Akam, M. E., Gait, M. J. and Karn, J. (1982). Nucleotide sequence of tobacco mosaic virus RNA. Proc. Natl Acad. Sci. USA, 79, 5818–5822CrossRefPubMedPubMedCentralGoogle Scholar
  40. Graham, J. and Butler, P. J. G. (1979). Binding of oligonucleotides to the disk of tobacco-mosaic-virus protein. Eur. J. Biochem., 93, 333–337CrossRefPubMedGoogle Scholar
  41. Guilley, H., Jonard, G., Richards, K. E. and Hirth, L. (1975a). Sequence of a specifically encapsidated RNA fragment originating from the tobacco-mosaic-virus coat-protein cistron. Eur. J. Biochem., 54, 135–144CrossRefPubMedGoogle Scholar
  42. Guilley, H., Jonard, G., Richards, K. E. and Hirth, L. (1975b). Observations concerning the sequence of two additional specifically encapsidated RNA fragments originating from the tobacco-mosaic-virus coat-protein cistron. Eur. J. Biochem., 54, 145–153CrossRefPubMedGoogle Scholar
  43. Guilley, H., Jonard, G., Kukla, B. and Richards, K. E. (1979). Sequence of 1000 nucleotides at the 3′ end of tobacco mosaic virus RNA. Nucleic Acids Res., 6, 1287–1308CrossRefPubMedPubMedCentralGoogle Scholar
  44. Higgins, T. J. V., Goodwin, P. B. and Whitfield, P. R. (1976). Occurrence of short particles in beans infected with the cowpea strain of TMV. Virology, 71, 486–497CrossRefPubMedGoogle Scholar
  45. Hirth, L. and Richards, K. E. (1981). Tobacco mosaic virus: model for structure and function of a simple virus. Adv. Virus Res., 26, 145–199CrossRefPubMedGoogle Scholar
  46. Holoubeck, V. (1962). Mixed reconstitution between protein from common tobacco mosaic virus and ribonucleic acid from other strains. Virology, 18, 401–404CrossRefGoogle Scholar
  47. Hunter, T. R., Hunt, T., Knowland, J. and Zimmern, D. (1976). Messenger RNA for the coat protein of tobacco mosaic virus. Nature, 260, 759–764CrossRefPubMedGoogle Scholar
  48. IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN) (1983). Abbreviations and symbols for the description of conformations of polynucleotide chains. Recommendations 1982. Eur. J. Biochem., 131, 9–15CrossRefGoogle Scholar
  49. Jardetzky, O., Akasaka, K., Vogel, D., Morris, S. and Holmes, K. C. (1978). Unusual segmental flexibility in a region of tobacco mosaic virus coat protein. Nature, 273, 564–566CrossRefPubMedGoogle Scholar
  50. Keith, J. and Fraenkel-Conrat, H. (1975). Tobacco mosaic virus RNA carries 5′-terminal triphosphorylated guanosine blocked by 5′-linked 7-methylguanosine. FEBS Lett., 57, 31–33CrossRefPubMedGoogle Scholar
  51. Lanina, T. P., Terganova, G. V., Ledneva, R. K. and Bogdanov, A. I. (1976). A study of the interaction of TMV protein with single- and double-stranded polynucleotides. FEBS Lett., 67, 167–170CrossRefPubMedGoogle Scholar
  52. Lebeurier, G., Nicolaieff, A. and Richards, K. E. (1977). Inside-out model for self-assembly of tobacco mosaic virus. Proc. Natl Acad. Sci. USA, 74, 149–153CrossRefPubMedPubMedCentralGoogle Scholar
  53. Lesyng, B. and Saenger, W. (1981). Influence of crystal packing forces on molecular structure in 4-thiouridine. Comparison of anti and syn forms. Z. Naturforsch., C36, 956–960Google Scholar
  54. Liljas, L. (1986). The structure of spherical viruses. Prog. Biophys. Molec. Biol., 48, 1–36CrossRefGoogle Scholar
  55. Lobert, S., Heil, P. D., Namba, K. and Stubbs, G. (1987). Preliminary X-ray fiber diffraction studies of cucumber green mottle mosaic virus, watermelon strain. J. Mol. Biol., 196, 935–938CrossRefPubMedGoogle Scholar
  56. Lomonossoff, G. P. and Butler, P. J. G. (1979). Location and encapsidation of the coat protein cistron of tobacco mosaic virus: a bidirectional elongation of the nucleoprotein rod. Eur. J. Biochem., 93, 157–164CrossRefPubMedGoogle Scholar
  57. Lomonossoff, G. P. and Butler, P. J. G. (1980). Assembly of tobacco mosaic virus: elongation towards the 3′-hydroxyl terminus of the RNA. FEBS Lett., 113, 271–274CrossRefPubMedGoogle Scholar
  58. McKinney, H. H. (1929). Mosaic diseases in the Canary Islands, West Africa and Gibraltar. J. Agric. Res., 39, 557–578Google Scholar
  59. Mandelkow, E., Stubbs, G. and Warren, S. (1981). Structures of the helical aggregates of tobacco mosaic virus protein. J. Mol. Biol., 152, 375–386CrossRefPubMedGoogle Scholar
  60. Meshi, T., Ohno, T., Iba, H. and Okada, Y. (1981). Nucleotide sequence of a cloned cDNA copy of TMV (cowpea strain) RNA, including the assembly origin, the coat protein cistron, and the 3′ non-coding region. Mol. Gen. Genet., 184, 20–25CrossRefPubMedGoogle Scholar
  61. Meshi, T., Ohno, T. and Okada, Y. (1982). Nucleotide sequence and its character of cistron coding for the 30K protein of tobacco mosaic virus (OM strain). J. Biochem., 91, 1441–1444PubMedGoogle Scholar
  62. Meshi, T., Kiyama, R., Ohno, T. and Okada, Y. (1983). Nucleotide sequence of the coat protein cistron and the 3′ noncoding region of cucumber green mottle mosaic virus (watermelon strain) RNA. Virology, 127, 54–64CrossRefPubMedGoogle Scholar
  63. Mondragon, A. (1984). X-ray crystallographic refinement of the disk form of tobacco mosaic virus. Ph.D. thesis, University of CambridgeGoogle Scholar
  64. Moras, D., Olsen, K. W., Sabesan, M. N., Buehner, M., Ford, G. C. and Rossmann, M. G. (1975). Studies of asymmetry in the three-dimensional structure of lobster d-glyceraldehyde-3-phosphate dehydrogenase. J. Biol. Chem., 250, 9137–9162PubMedGoogle Scholar
  65. Namba, K. and Stubbs, G. (1985). Solving the phase problem in fiber diffraction. Application to tobacco mosaic virus at 3.6 Å resolution. Acta Cryst., A41, 252–262CrossRefGoogle Scholar
  66. Namba, K. and Stubbs, G. (1986). Structure of tobacco mosaic virus at 3.6 Å resolution: implications for assembly. Science, 231, 1401–1406CrossRefPubMedGoogle Scholar
  67. Namba, K., Caspar, D. L. D. and Stubbs, G. (1985). Computer graphics representation of levels of organization in tobacco mosaic virus structure. Science, 221, 773–776CrossRefGoogle Scholar
  68. Namba, K., Pattanayek, R. and Stubbs, G. (1989). Visualization of protein-nucleic acid interactions in a virus: refined structure of intact tobacco mosaic virus at 2.9 Å resolution by X-ray fiber diffraction. J. Mol. Biol., in pressGoogle Scholar
  69. Öberg, B. and Philipson, L. (1972). Binding of histidine to tobacco mosaic virus RNA. Biochem. Biophys. Res. Comm., 48, 927–932CrossRefPubMedGoogle Scholar
  70. Ohno, T., Yamaura, R., Kuriyama, K., Inoue, H. and Okada, Y. (1972). Structure of N-bromo-succinimide-modified tobacco mosaic virus protein and its function in the reconstitution process. Virology, 50, 76–83CrossRefGoogle Scholar
  71. Ohno, T., Okada, Y., Shimotohno, K., Miura, K., Shinshi, H., Miwa, M. and Sugimura, T. (1976). Enzymatic removal of the 5′-terminal methylated blocked structure of tobacco mosaic virus RNA and its effects on infectivity and reconstitution with coat protein. FEBS Lett., 67, 209–213CrossRefPubMedGoogle Scholar
  72. Ohno, T., Aoyagi, M., Yamanashi, Y., Saito, H., Ikawa, S., Meshi, T. and Okada, Y. (1984). Nucleotide sequence of the tobacco mosaic virus (tomato strain) genome and comparison with the common strain genome. J. Biochem., 96, 1915–1923PubMedGoogle Scholar
  73. Okada, Y. (1986). Cucumber green mottle mosaic virus. In Van Regenmortel, M. H. V. and Fraenkel-Conrat, H. (eds), The Plant Viruses, vol. 2, Plenum, New York, 267–281CrossRefGoogle Scholar
  74. Okada, Y., Ohashi, Y., Ohno, T. and Nozu, Y. (1970). Sequential reconstitution of tobacco mosaic virus. Virology, 42, 243–245CrossRefPubMedGoogle Scholar
  75. Ollis, D. L., Brick, P., Hamlin, R., Xuong, N. G. and Steitz, T. A. (1985). Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP. Nature, 313, 762–766CrossRefPubMedGoogle Scholar
  76. Perham, R. N. (1969). Sucrose density-gradient analysis of the alkaline degradation of tobacco mosaic virus. J. Mol. Biol., 45, 439–441CrossRefPubMedGoogle Scholar
  77. Perham, R. N. and Wilson, T. M. A. (1976). The polarity of stripping of coat protein subunits from the RNA in tobacco mosaic virus under alkaline conditions. FEBS Lett., 62, 11–15CrossRefPubMedGoogle Scholar
  78. Perham, R. N. and Wilson, T. M. A. (1978). The characterization of intermediates formed during the disassembly of tobacco mosaic virus at alkaline pH. Virology, 84, 293–302CrossRefPubMedGoogle Scholar
  79. Richards, K. E., Guilley, J., Jonard, G. and Hirth, L. (1978). Nucleotide sequence at the 5′extremity of tobacco-mosaic-virus RNA. 1. The noncoding region (nucleotides 1–68). Eur. J. Biochem., 84, 513–519CrossRefPubMedGoogle Scholar
  80. Rietveld, K., Linschooten, K., Pleij, C. W. A. and Bosch, L. (1984). The three-dimensional folding of the tRNA-like structure of tobacco mosaic virus RNA. A new building principle applied twice. EMBO J., 3, 2613–2619PubMedPubMedCentralGoogle Scholar
  81. Rochon, D. and Siegel, A. (1984). Chloroplast DNA transcripts are encapsidated by tobacco mosaic virus coat protein. Proc. Natl Acad. Sci. USA, 81, 1719–1723CrossRefPubMedPubMedCentralGoogle Scholar
  82. Saenger, W. (1984). Principles of Nucleic Acid Structure, Springer, New YorkCrossRefGoogle Scholar
  83. Saran, A., Pullman, B. and Perahia, D. (1973). Molecular orbital calculations on the conformation of nucleic acids and their constituents. IV. Conformation about the exocyclic C4′-C5′ bond. Biochim. Biophys. Acta, 299, 497–499CrossRefPubMedGoogle Scholar
  84. Shalaby, R. A. F. and Lauffer, M. A. (1977). Hydrogen ion uptake upon tobacco mosaic virus protein polymerization. J. Mol. Biol., 116, 709–725CrossRefPubMedGoogle Scholar
  85. Shaw, J. G., Piaskitt, K. A. and Wilson, T. M. A. (1986). Evidence that tobacco mosaic virus particles disassemble cotranslationally in vivo. Virology, 148, 326–336CrossRefPubMedGoogle Scholar
  86. Sherwood, J. L. and Fulton, R. W. (1982). The specific involvement of coat protein in tobacco mosaic virus cross protection. Virology, 119, 150–158CrossRefPubMedGoogle Scholar
  87. Shire, S. J., Steckert, J. J. and Schuster, T. M. (1981). Mechanism of tobacco mosaic virus assembly: incorporation of 4S and 20S protein at pH 7.0 and 20 °C. Proc. Natl Acad. Sci. USA, 78, 256–260CrossRefPubMedPubMedCentralGoogle Scholar
  88. Siegel, A., Hari, V., Montgomery, I. and Kolacz, K. (1976). A messenger RNA for capsid protein isolated from tobacco mosaic virus-infected tissue. Virology, 73, 363–371CrossRefPubMedGoogle Scholar
  89. Sleat, D. E., Turner, P. C., Finch, J. T., Butler, P. J. G. and Wilson, T. M. A. (1986). Packaging of recombinant RNA molecules into pseudovirus particles directed by the origin-of-assembly sequence from tobacco mosaic virus RNA. Virology, 155, 299–308CrossRefPubMedGoogle Scholar
  90. Steckert, J. J. and Schuster, T. M. (1982). Sequence specificity of trinucleoside diphosphate binding to polymerized tobacco mosaic virus protein. Nature, 299, 32–36CrossRefPubMedGoogle Scholar
  91. Stubbs, G. (1984). Macromolecular interactions in tobacco mosaic virus. In Jurnak, F. A. and McPherson, A. (eds), Biological Macromolecules and Assemblies, Vol. I: Virus Structures, Wiley, New York, 149–202Google Scholar
  92. Stubbs, G. (1989). Virus structure. In Fasman, G. (ed.), Prediction of Protein Structure and Principles of Protein Conformation, Plenum, New York, in pressGoogle Scholar
  93. Stubbs, G. and Stauffacher, C. (1981). Structure of the RNA in tobacco mosaic virus. J. Mol. Biol., 152, 387–396CrossRefPubMedGoogle Scholar
  94. Stubbs, G., Warren, S. and Holmes, K. (1977). Structure of RNA and RNA binding site in tobacco mosaic virus from a 4 Å map calculated from X-ray fibre diagrams. Nature, 267, 216–221CrossRefPubMedGoogle Scholar
  95. Sulzinski, M. A., Gabard, K. A., Palukaitis, P. and Zaitlin, M. (1985). Replication of tobacco mosaic virus. VIII. Characterization of a third subgenomic TMV RNA. Virology, 145, 132–140CrossRefPubMedGoogle Scholar
  96. Turner, D. R., Mondragon, A., Fairall, L., Bloomer, A. C., Finch, J. T., van Boom, J. H. and Butler, P. J. G. (1986). Oligonucleotide binding to the coat protein disk of tobacco mosaic virus. Possible steps in the mechanism of assembly. Eur. J. Biochem., 157, 269–274CrossRefPubMedGoogle Scholar
  97. Wang, A. H.-J., Quigley, G. J., Kolpak, F. J., Crawford, J. L., van Boom, J. M., van der Marel, G. and Rich, A. (1979). Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature, 282, 680–686CrossRefPubMedGoogle Scholar
  98. Wilson, T. M. A. (1984). Cotranslational disassembly of tobacco mosaic virus in vitro. Virology, 137, 255–265CrossRefPubMedGoogle Scholar
  99. Wilson, T. M. A. and Watkins, P. A. C. (1986). Influence of exogenous viral coat protein on the cotranslational disassembly of tobacco mosaic virus (TMV) particles in vitro. Virology, 149, 132–135CrossRefPubMedGoogle Scholar
  100. Wilson, T. M. A., Perham, R. N., Finch, J. T. and Butler, P. J. G. (1976). Polarity of the RNA in the tobacco mosaic virus particle and the direction of protein stripping in sodium dodecyl sulphate. FEBS Lett., 64, 285–289CrossRefPubMedGoogle Scholar
  101. Wilson, T. M. A., Perham, R. N. and Butler, P. J. G. (1978). Intermediates in the disassembly of tobacco mosaic virus at alkaline pH. Infectivity, self-assembly, and translational activities. Virology, 89, 475–483CrossRefPubMedGoogle Scholar
  102. Zimmern, D. (1975). The 5′ end group of tobacco mosaic virus RNA is m7GpppGp. Nucleic Acids Res., 2, 1189–1201CrossRefPubMedPubMedCentralGoogle Scholar
  103. Zimmern, D. (1977). The nucleotide sequence at the origin for assembly on tobacco mosaic virus RNA. Cell, 11, 463–482CrossRefPubMedGoogle Scholar
  104. Zimmern, D. (1983). An extended secondary structure model for the TMV assembly origin, and its correlation with protection studies and an assembly defective mutant. EMBO J., 2, 1901–1907PubMedPubMedCentralGoogle Scholar
  105. Zimmern, D. and Butler, P. J. G. (1977). The isolation of tobacco mosaic virus RNA fragments containing the origin for viral assembly. Cell, 11, 455–462CrossRefPubMedGoogle Scholar
  106. Zimmern, D. and Wilson, T. M. A. (1976). Location of the origin for viral reassembly on tobacco mosaic virus RNA and its relation to the stable fragment. FEBS Lett., 71, 294–298CrossRefPubMedGoogle Scholar

Copyright information

© The Contributors 1989

Authors and Affiliations

There are no affiliations available

Personalised recommendations