Advertisement

The single-stranded DNA binding protein of Escherichia coli: physicochemical properties and biological functions

Chapter
  • 20 Downloads
Part of the Topics in Molecular and Structural Biology book series (TMSB)

Abstract

Single-stranded DNA binding proteins fulfil important functions in DNA metabolism. They have been shown to be essential for replication, recombination and repair in bacteria and bacteriophages. The best-studied single-stranded DNA binding proteins are the gene32 protein from T4-phage (gp32) (for reviews, cf. Kowalczykowski et al., 1981; Chase and Williams, 1986; Chase, 1984), the gene5 protein from filamentous phages (gp5) (for reviews, cf. Kowalczykowski et al., 1981), and the E. coli single-stranded DNA binding protein.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberts, B. M., Amodio, F. J., Jenkins, M., Gutmann, E. D. and Ferris, R. L. (1968).Google Scholar
  2. Studies with DNA-cellulose chromatography. I. DNA-binding proteins from Escherichia coli. Cold Spring Harbour Symp. Quant. Biol., 33, 289–305Google Scholar
  3. Anderson, R. A. and Coleman, J. E. (1975). Physicochemical properties of DNA binding proteins: gene 32 protein of T4 an E. coli unwinding protein. Biochemistry, 14, 5485–5491PubMedCrossRefGoogle Scholar
  4. Babul, J. and Stellwagen, E. (1969). Measurement of protein concentration with interference optics. Anal. Biochem., 28, 216–221PubMedCrossRefGoogle Scholar
  5. Baluch, J., Chase J. W. and Sussman, R. (1980). Synthesis of recA protein and induction of bacteriophage lambda in single-strand DNA binding protein mutants of E. coli. J. Bacteriol., 144, 489–498PubMedPubMedCentralGoogle Scholar
  6. Bandyopadhyay, P. K. and Wu, C. (1978). Fluorescence and chemical studies on the interaction of E. coli DNA-binding protein with single-stranded DNA. Biochemistry, 17, 4078–4084PubMedCrossRefGoogle Scholar
  7. Bayer, I., Fliess, A., Greipel, J., Urbanke, C. and Maass, G. (1989). Modulation of the affinity of the single-stranded DNA-binding protein of Escherichia coli (E. coli SBB) to poly(dT) by site-directed mutagenesis, Eur. J. Biochem., in pressGoogle Scholar
  8. Benham, C. (1985). Theoretical analysis of conformational equilibria in superhelical DNA. Ann. Rev. Biophys. Biophys. Chem., 14, 23–45CrossRefGoogle Scholar
  9. Berg, O. G. and von Hippel, P. (1985). Diffusion controlled macromolecular interactions. Ann. Rev. Biophys. Biophys. Chem., 14, 131–160CrossRefGoogle Scholar
  10. Berg, O.G., Winter, R. B. and von Hippel, P. H. (1981). Diffusion-driven mechanisms of protein translocation on nucleic acids. I. Models and theory. Biochemistry, 20, 6929–6948PubMedCrossRefGoogle Scholar
  11. Bobst, E. V., Bobst, A. M., Perrino, F. W., Meyer, R. R. and Rein, D. C. (1985). Variability in the nucleic acid binding site size and the amount of single-stranded DNA binding protein in E. coli. FEBS Letters, 181, 133–137PubMedCrossRefGoogle Scholar
  12. Böhme, H. J., Kopperschläger, G., Schulz, G. and Hofman, E. (1972). Affinity chromatography of phosphofructokinase using Cibacron blue F3G-A. J. Chrom., 69, 209–214CrossRefGoogle Scholar
  13. Boidot-Forget, M., Saeson-Behmoaras, T., Toulme, J.-J. and Helene, C. (1986). Single-trand binding proteins from phage T4 and E. coli form nucleosome-like structures with poly(dT). Biochimie., 68, 1129–1134PubMedCrossRefGoogle Scholar
  14. Bujalowski, W. and Lohman, T. M. (1986). E. coli single-strand binding protein forms multiple, distinct complexes with single-stranded DNA. Biochemistry, 25, 7799–7802PubMedCrossRefGoogle Scholar
  15. Bujalowski, W. and Lohman, T. M. (1987a). Limited co-operativity in protein-nucleic acid interactions. J. Mol. Biol., 195, 897–907PubMedCrossRefGoogle Scholar
  16. Bujalowski, W. and Lohman, T. M. (1987b). A general method of analysis of ligand-macromolecule equilibria using a spectroscopic signal from the ligand to monitor binding. Application to Escherichia coli single-strand binding protein-nucleic acid interactions. Biochemistry, 26, 3099–3106PubMedCrossRefGoogle Scholar
  17. Casas-Finet, J. R., Jhon, N. M., Khamis, M. I., Maki, A. H., Ruvolo, P. P. and Chase, J. W. (1988). An IncY plasmid-encoded single-stranded DNA binding protein from E. coli shows identical pattern of stacked Trp residues as the chromosomal ssb gene product. Eur. J. Biochem., 178, 101–107PubMedCrossRefGoogle Scholar
  18. Casas-Finet, J. R., Khamis, M. I., Maki, A., Ruvolo, P. R. and Chase, J. W. (1987a). Optically detected magnetic resonance of tryptophan residues in E. coli ssb gene product and E. coli plasmid-encoded single-stranded DNA-binding proteins and their complexes with poly(deoxythymidylic) acid. J. Biol. Chem., 262, 8574–8583PubMedGoogle Scholar
  19. Casas-Finet, J. R., Khamis, M. I., Maki, A. and Chase, J. W. (1987b). Tryptophan 54 and phenylalanine 60 are involved synergistically in the binding of E. coli SSB protein to single stranded polynucleotides. FEBS Letters, 220, 347–352PubMedCrossRefGoogle Scholar
  20. Cassuto, E., West, S. C., Mursalim, J., Conlon, S. and Howard-Flanders, P. (1980). Initiation of genetic recombination: Homologous pairing between duplex DNA molecules promoted by recA protein. Proc. Natl Acad. Sci. USA, 77, 3962–3966PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cha, T. A. and Maki, A. H. (1984). Close range interactions between nucleotide bases and Trp residues in an E. coli single-strand DNA binding protein-mercurated poly(Uridylic acid) complex. J. Biol. Chem., 259, 1105–1109PubMedGoogle Scholar
  22. Chase, J. W. (1984). The role of E. coli single-stranded DNA binding protein in DNA metabolism. BioEssays, 1, 218–222CrossRefGoogle Scholar
  23. Chase, J. M. and Williams, K. R. (1986). Single-stranded DNA binding proteins required for DNA replication. Ann. Rev. Biochem., 55, 103–136PubMedCrossRefGoogle Scholar
  24. Chase, J. W., Whittier, R. F., Auerbach, J., Sancar, A. and Rupp, W. D. (1980). Amplification of single-stranded DNA binding protein in E. coli. Nucl. Acids Res., 8, 3215–3227PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chase, J. W., Merrill, B. M. and Williams, K. R. (1983). F sex factor encodes a single-stranded DNA binding protein (SSB) with extensive sequence homology to Escherichia coli SSB. Proc. Natl Acad. Sci. USA, 80, 5480–5484PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chase, J. W., L’Italien, J. J., Murphy, J. B., Spicer, E. K. and Williams, K. R. (1984). Characterization of the E. coli ssb113 mutant single-stranded DNA binding protein. Cloning of the gene, DNA and protein sequence analysis, HPLC, peptide mapping and DNA binding studies. J. Biol. Chem., 259, 805–814PubMedGoogle Scholar
  27. Christiansen, C. and Baldwin, R. L. (1977). Catalysis of DNA reassociation by the Escherichia coli DNA binding protein. J. Mol. Biol., 115, 441–454PubMedCrossRefGoogle Scholar
  28. Chrysogelos, S. and Griffith, J. (1982). E. coli single-strand binding protein organizes single-stranded DNA in nucleosome like units. Proc. Natl Acad. Sci. USA, 19, 5803–5807CrossRefGoogle Scholar
  29. Chrysogelos, S. and Griffith, J. (1984). Visualization of SSB-ssDNA complexes active in the assembly of stable RecA-DNA filaments. Cold Spring Harbour Symp. Quant. Biol., 49, 553–559CrossRefGoogle Scholar
  30. Clore, G. M. and Gronenborn, A. (1984). An investigation into the solution structure of the single-stranded DNA undecamer 5′-dAAGTGTGATAT by means of nuclear Overhauser enhancement measurements. Eur. Biophys. J., 11, 95–102PubMedCrossRefGoogle Scholar
  31. Clore, G. M., Gronenborn, A. M., Greipel, J. and Maass, G. (1986). Conformation of the DNA undecamer 5′d(AAGTGTGATAT) bound to the single-stranded DNA binding protein of E. coli. A time-dependent transferred nuclear Overhauser study. J. Mol. Biol., 187, 119–124PubMedCrossRefGoogle Scholar
  32. Cohen, S. P., Resnick, J. and Sussman, R. (1983). Interaction of single-strand binding protein and RecA protein at the single-stranded DNA site. J. Mol. Biol., 167, 901–910PubMedCrossRefGoogle Scholar
  33. Cox, M. M., Soltis, D. A., Lehman, I. R., De Brosse, C. and Benkobovic, S. J. (1983). On the role of single-stranded DNA binding protein promoted DNA strand exchange. J. Biol. Chem., 258, 2586–2592PubMedGoogle Scholar
  34. Egner, C., Azhderian, E., Tsang, S. S., Radding, C. M. and Chase, J. W. (1987). Effects of various single-strand DNA binding proteins on reactions promoted by recA protein. J. Bacteriol., 169, 3422–3428PubMedPubMedCentralGoogle Scholar
  35. Epstein, I. R. (1978). Co-operative and non-co-operative binding of large ligands to a finite one-dimensional lattice. A model for ligand-oligonucleotide interactions. Biophys. Chem., 8, 327–339PubMedCrossRefGoogle Scholar
  36. Fay, P. J., Johanson, K. O., McHenry, C. S. and Bambara, R. A. (1981). Size classes of products synthesized processively by DNA polymerase III and DNA polymerase III holoenzyme of E. coli. J. Biol. Chem., 256, 976–983PubMedGoogle Scholar
  37. Field, J., Gronostajski, R. M. and Hurwitz, J. (1984). Properties of the adenovirus DNA polymerase. J. Biol. Chem., 259, 9487–9495PubMedGoogle Scholar
  38. Glikin, G. C., Gargiulo, G., Rena-Descalzi, L. and Worcel, A. (1983). E. coli single-stranded DNA binding protein stabilizes specific denatured sites in superhelical DNA. Nature, 303, 770–774PubMedCrossRefGoogle Scholar
  39. Greipel, J., Maass, G. and Mayer, F. (1987). Complexes of the single-strand DNA binding protein from E. coli (EcoSSB) with poly(dT). An investigation of their structure and internal dynamics by means of electron microscopy and nmr. Biophys. Chem., 26, 149–161PubMedCrossRefGoogle Scholar
  40. Grosse, F., Nasheuer, H. P., Scholtissek, S. and Schomburg, U. (1986). LDH and GAPDH are single-stranded DNA binding proteins that affect the DNA-polymerase a primase complex. Eur. J. Biochem., 160, 459–467PubMedCrossRefGoogle Scholar
  41. Hilgenfeld, R., Saenger, W., Schomburg, U. and Krauss, G. (1984). Novel crystal forms of a proteolytic core of the single-stranded DNA binding protein (SSB) from E. coli. FEBS Letters, 170, 143–146CrossRefGoogle Scholar
  42. Hill, T. L. and Tsuchiya, T. (1981). Theoretical aspects of translocation on DNA: adenosine triphosphatases and treadmilling binding proteins. Proc. Natl Acad. Sci. USA, 78, 4796–4800PubMedPubMedCentralCrossRefGoogle Scholar
  43. Jong, A. Y. S. and Campbell, J. L. (1984). The CDC-8 gene product of yeast encodes thymidilate kinase. J. Biol. Chem., 259, 1052–1059Google Scholar
  44. Khamis, M. I., Casas-Finet, J. R., Maki, A. H., Murphy, J. B. and Chase, J. W. (1987a). Role of tryptophan 54 in the binding of E. coli single-stranded DNA-binding protein to single-stranded polynucleotides. FEBS Letters, 211, 155–159PubMedCrossRefGoogle Scholar
  45. Khamis, M. I., Casas-Finet, J. R. and Maki, A. H. (1987b). Stacking interactions of Trp residues and nucleotide bases in complexes formed between E. coli single-stranded DNA binding protein and heavy atom modified poly(U). J. Biol. Chem., 262, 1725–1733PubMedGoogle Scholar
  46. Khamis, M. I., Casas-Finet, J. R., Maki, A. H., Murphy, J. B. and Chase, J. W. (1987c). Investigation of the role of individual tryptophan residues in the binding of E. coli single-stranded DNA binding protein to single-stranded polynucleotides. J. Biol. Chem., 262, 10938–10945PubMedGoogle Scholar
  47. Khamis, M. I., Casas-Finet, J. R., Maki, A. H., Ruvolo, P. P. and Chase, J. W. (1987d). Optically detected magnetic resonance of Trp residues in complexes formed between a bacterial single-stranded DNA binding protein and heavy atom modified poly(U). Biochemistry, 26, 3347–3354PubMedCrossRefGoogle Scholar
  48. Kornberg, A. (1980). DNA Replication. W. H. Freeman & Co., San FranciscoGoogle Scholar
  49. Kornberg, A. (1982). 1982 Supplement to DNA Replication. W. H. Freeman & Co., San FranciscoGoogle Scholar
  50. Kowalczykowski, S. C., Bear, D. G. and von Hippel, P. H. (1981). Single-stranded DNA binding proteins. The Enzymes, vol. 14 (P. Boyer, ed.), Academic Press, New YorkGoogle Scholar
  51. Kowalczykowski, S. C., Clow, J., Somani, R. and Varghese, A. (1987). Effects of the E. coli SSB protein on the binding of E. coli RecA protein to single stranded DNA. Demonstration of competitive binding and the lack of a specific protein-protein interaction. J. Mol. Biol., 191, 81–95CrossRefGoogle Scholar
  52. Kowalczykowski, S. C. and Rupp, R. A. (1987). Effects of Escherichia coli SSB protein on the single-stranded DNA-dependent ATPase activity of Escherichia coli RecA protein. J. Mol. Biol., 193, 97–113PubMedCrossRefGoogle Scholar
  53. Krauss, G., Sindermann, H., Schomburg, U. and Maass, G. (1981). E. coli single-stranded deoxyribonucleic acid binding protein: stability, specificity, and kinetics of complexes with oligonucleotides and deoxyribonucleic acid. Biochemistry, 20, 5346–5352PubMedCrossRefGoogle Scholar
  54. Kunkel, T. A., Meyer, R. R. and Loeb, L. A. (1979). Single-stranded DNA binding protein enhances the fidelity of DNA synthesis in vitro. Proc. Natl Acad. Sci. USA, 16, 6331–6335CrossRefGoogle Scholar
  55. Langowski, J., Benight, A. S., Fujimoto, B. S., Schurr, J. M. and Schomburg, U. (1985). Change of conformation and internal dynamics of super-coiled DNA upon binding of E. coli single-stranded binding protein. Biochemistry, 24, 4022–4028PubMedCrossRefGoogle Scholar
  56. Lohman, T. M. (1983). Cooperatively bound protein nucleic acid complexes. Biopolymers, 22, 1697–1713PubMedCrossRefGoogle Scholar
  57. Lohman, T. M. (1986). Kinetics of protein-nucleic acid interactions: use of salt effects to probe mechanisms of interaction. CRC Critical Reviews in Biochemistry, 19, 191–245Google Scholar
  58. Lohman, T. M. and Kowalczykowski, S. C. (1981). Kinetics and mechanism of the association of the bacteriophage T4 gene 32 (helix destabilizing) protein with single-stranded nucleic acids. J. Mol. Biol., 152, 67–110PubMedCrossRefGoogle Scholar
  59. Lohman, T. M. and Overman, L. B. (1985). Two binding modes in E. coli single-strand binding protein (SSB) single-stranded DNA complexes: modulation by NaCl concentration. J. Biol. Chem., 260, 3594–3603PubMedGoogle Scholar
  60. Lohman, T. M., Green, J. M. and Beyer, R. S. (1986a). Large-scale overproduction and rapid purification of the E. coli ssb gene product. Expression of the ssb gene under λ PL control. Biochemistry, 25, 21–25PubMedCrossRefGoogle Scholar
  61. Lohman, T. M., Overman, L. B. and Datta, S. (1986b). Salt-dependent changes in the DNA binding co-operativity of E. coli single-stranded binding protein. J. Mol. Biol., 187, 603–616PubMedCrossRefGoogle Scholar
  62. McEntee, K. (1985). Kinetics of DNA renaturation catalyzed by recA protein of E. coli. Biochemistry, 24, 4345–4351PubMedCrossRefGoogle Scholar
  63. McEntee, K., Weinstock, G. M. and Lehman, I. R. (1980). RecA protein-catalyzed strand assimilation: stimulation by E. coli single-stranded DNA binding protein. Proc. Natl Acad. Sci. USA, 77, 857–861PubMedPubMedCentralCrossRefGoogle Scholar
  64. McGhee, J. D. and von Hippel, P. H. (1974). Theoretical aspects of DNA-protein interactions: co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice. J. Mol. Biol., 86, 469–489PubMedCrossRefGoogle Scholar
  65. Mazur, S. J. and Record, M. T. (1986). Kinetics of nonspecific binding reactions of proteins with DNA flexible coils: site-based and molecule-based association reactions. Biopolymers, 25, 985–1008PubMedCrossRefGoogle Scholar
  66. Merrill, B. M., Williams, K. R., Chase, J. W. and Konigsberg, W. H. (1984). Photochemical cross-linking of the E. coli single-stranded DNA binding protein to oligodeoxynucleotides. J. Biol. Chem., 259, 10850–10856PubMedGoogle Scholar
  67. Meyer, R. R., Glassberg, J. and Kornberg, A. (1979). An E. coli mutant defective in single-strand binding protein is defective in DNA replication. Proc. Natl Acad. Sci. USA, 76, 1702–1705PubMedPubMedCentralCrossRefGoogle Scholar
  68. Meyer, R. R., Glassberg, J., Scott, J. V. and Kornberg, A. (1980). Temperature-sensitive single-stranded DNA-binding protein from Escherichia coli. J. Biol. Chem., 255, 2897–2901PubMedGoogle Scholar
  69. Molineux, I. J., Friedman, S. and Gefter, M. L. (1974). Purification and properties of the E. coli deoxyribonucleic acid-unwinding protein. J. Biol. Chem., 249, 6090–6098PubMedGoogle Scholar
  70. Molineux, I. J. and Gefter, M. (1974). Properties of the Escherichia coli DNA binding (unwinding) protein: Interaction with DNA polymerase and DNA. Proc. Natl Acad. Sci. USA, 71, 3858–3862PubMedPubMedCentralCrossRefGoogle Scholar
  71. Molineux, I. J. and Gefter, M. (1975). Properties of the Escherichia coli DNA binding (unwinding) protein: interaction with nucleolytic enzymes and DNA. J. Mol. Biol., 98, 811–825PubMedCrossRefGoogle Scholar
  72. Molineux, I. J., Pauli, A. and Gefter, M. L. (1975). Physical studies of the interaction between the Escherichia coli DNA binding protein and nucleic acids. Nucl. Acids Res., 2, 1821–1837PubMedPubMedCentralCrossRefGoogle Scholar
  73. Monzingo, A. F. and Christiansen, C. (1983). Crystallization of single-stranded DNA binding protein. J. Mol. Biol., 170, 797–801CrossRefGoogle Scholar
  74. Morrical, S. W., Lee, J. and Cox, M. M. (1986). Continuous association of E. coli single-strand DNA binding protein with stable complexes of recA protein and single-stranded DNA. Biochemistry, 25, 1482–1494PubMedCrossRefGoogle Scholar
  75. Niyogi, S. K., Ratrie, H., III and Datta, A. K. (1977). Effect of E. coli DNA binding protein on the transcription of single-stranded phage M13 DNA by E. coli RNA polymerase. Biochem. Biophys. Res. Comm., 78, 343–349PubMedCrossRefGoogle Scholar
  76. Ollis, D., Brick, P., Abdel-Meguid, S. S., Murthy, K., Chase, J. W. and Steitz, T. A. (1983). Crystals of E. coli single-strand DNA binding protein show that the tetramer has D2 symmetry. J.Mol. Biol., 170, 797–800PubMedCrossRefGoogle Scholar
  77. Overman, L. B., Bujalowski, W. and Lohman, T. M. (1988). Equilibrium binding of E. coli single-strand binding protein to single-stranded nucleic acids in the (SSB)65 binding mode. Cation and anion effects and polynucleotide specificity. Biochemistry, 27, 465–471CrossRefGoogle Scholar
  78. Perrino, F. W., Rein, D. C., Ruben, S. M., Bobst, A. M. and Meyer, R. R. (1986). Protein-protein interactions of E. coli single-stranded DNA binding protein identified by SSB affinity chromatography. UCLA Symposia on Molecular and Cellular Biology, Mar. 16–23, J. Cell Biochem. Suppl., 239Google Scholar
  79. Perucho, M., Salas, J. and Salas, M. L. (1977). Identification of mammalian DNA binding protein P8 as glyceraldehyde-3-phosphate dehydrogenase. Eur. J. Biochem., 81, 557–562PubMedCrossRefGoogle Scholar
  80. Pörschke, D. and Rauh, H. (1983). Cooperative, excluded site binding and its dynamics for the interaction of gene 5 protein with polynucleotides. Biochemistry, 22, 4737–4745PubMedCrossRefGoogle Scholar
  81. Radding, C. M., Flory, J., Wu, A., Kahn, R., DasGupta, C., Gonda, D., Bianchi, M. and Tsang, S. S. (1982). Three phases in homologous pairing. Polymerization of recA protein on single-stranded DNA, synapsis and polar strand exchange. Cold Spring Harbour Symp. Quant. Biol., 47, 821–828CrossRefGoogle Scholar
  82. Reckmann, B., Grosse, F., Urbanke, C., Frank, R. and Blöcker, H. (1985). Analysis of secondary structures in M13mp8(+) single-stranded DNA by the pausing of DNA polymerase α. Eur. J. Biochem., 152, 633–644PubMedCrossRefGoogle Scholar
  83. Register, J. C. II and Griffith, J. (1985). The direction of RecA protein assembly onto single-stranded DNA is the same as the direction of strand assimilation during strand exchange. J. Biol. Chem., 260, 12308–12312PubMedGoogle Scholar
  84. Resnick, J. and Sussman, R. (1982). E. coli single-strand DNA binding protein from wild type and lexC113 mutant affects in vitro proteolytic cleavage of phage λ repressor. Proc. Natl Acad. Sci. USA, 79, 2832–2835PubMedPubMedCentralCrossRefGoogle Scholar
  85. Richter, A., Sapp, M. and Knippers, R. (1986). Are single-strand specific DNA binding proteins needed for mammalian replication? Trends Biochem. Sci., 11, 283–284CrossRefGoogle Scholar
  86. Riddles, P. W. and Lehman, I. R. (1985a). The formation of paranemic and plectonemic joints between DNA molecules by the recA and single-stranded DNA-binding proteins of Escherichia coli. J. Biol. Chem., 260, 165–169PubMedGoogle Scholar
  87. Riddles, P. W. and Lehman, I. R. (1985b). The formation of plectonemic joints by the recA protein of Escherichia coli. J. Biol. Chem., 260, 170–173PubMedGoogle Scholar
  88. Römer, R., Schomburg, U., Krauss, G. and Maass, G. (1984). E. coli single-stranded DNA binding protein is mobile on DNA. 1H NMR study of its interaction with oligo- and polynucleotides. Biochemistry, 23, 6132–6137PubMedCrossRefGoogle Scholar
  89. Ruyechan, W. T. and Wetmur, J. G. (1975). Studies on the co-operative binding of the E. coli DNA unwinding protein to single-stranded DNA. Biochemistry, 14, 5529–5534PubMedCrossRefGoogle Scholar
  90. Ruyechan, W. T. and Wetmur, J. G. (1976). Studies on the non-co-operative binding of the E. coli DNA unwinding protein to single-stranded nucleic acids. Biochemistry, 15, 5057–5062PubMedCrossRefGoogle Scholar
  91. Sancar, A., Williams, K. R., Chase, J. W. and Rupp, W. D. (1981). Sequences of the ssb gene and protein. Proc. Natl Acad. Sci. USA, 78, 4274–4278PubMedPubMedCentralCrossRefGoogle Scholar
  92. Schneider, R. J. and Wetmur, J. G. (1982). Kinetics of transfer of E. coli single-stranded DNA binding protein between single-stranded DNA molecules. Biochemistry, 21, 608–615PubMedCrossRefGoogle Scholar
  93. Scholtissek, S. and Grosse, F. (1988). A plasmid vector system for the expression of a tri-protein consisting of β-galactosidase, a collagenase recognition site and a foreign gene. Gene, 62, 55–64PubMedCrossRefGoogle Scholar
  94. Schomburg, U. (1985). Escherichia coli single-strand DNA binding protein: investigations on the stability, kinetics, and structure of its complexes with nucleic acids. Thesis, University of Hanover, West GermanyGoogle Scholar
  95. Schwarz, G. and Watanabe, F. (1983). Thermodynamics and kinetics of co-operative protein-nucleic acid binding. I. General aspects of analysis of data. J.Mol. Biol., 163, 467–484PubMedCrossRefGoogle Scholar
  96. Schwarz, G. and Stankowski, S. (1979). Linear co-operative binding of large ligands involving mutual exclusion of different binding modes. Biophys. Chem., 10, 173–181PubMedCrossRefGoogle Scholar
  97. Schwarz, G. (1977). On the analysis of linear binding effects associated with curved scatchard plots. Biophys. Chem., 6, 65–76CrossRefGoogle Scholar
  98. Shimamoto, N., Ikushima, N., Utiyama, H., Tachibana, H. and Horie, K. (1987). Specific and co-operative binding of E. coli single-strand DNA binding protein to mRNA. Nucl. Acids Res., 15, 5241–5250PubMedPubMedCentralCrossRefGoogle Scholar
  99. Sigal, N., Delius, J., Kornberg, T., Gefter, M. L. and Alberts, B. (1972). A DNA-unwinding protein isolated from Escherichia coli: its interaction with DNA and with DNA polymerases. Proc. Natl Acad. Sci. USA, 69, 3537–3541PubMedPubMedCentralCrossRefGoogle Scholar
  100. Srivenugopal, K. S. and Morris, D. R. (1986). Modulation of the relaxing activity of E. coli topo-isomerase I by single-stranded DNA binding proteins. Biochem. Biophys. Res. Commun., 137, 795–800PubMedCrossRefGoogle Scholar
  101. Valentini, O., Biamonti, G., Pandolfo, M., Morandi, C. and Riva, S. (1985). Mammalian single-stranded DNA binding proteins and heterogeneous nuclear RNA proteins have common antigenic determinants. Nucl. Acids Res., 13, 337–346PubMedPubMedCentralCrossRefGoogle Scholar
  102. VanAmerongen, H., VanGrondelle, R. and VanDeVliet, P. C. (1987). Interaction between adenovirus DNA binding protein and single-stranded polynucleotides studied by CD and UV absorption. Biochemistry, 26, 4646–4652PubMedCrossRefGoogle Scholar
  103. VanDerEnde, A., Baker, T. A., Ogawa, T. and Kornberg, A. (1985). Initiation of enzymatic replication at the origin of the E. coli chromosome: primase as the sole priming enzyme. Proc. Natl Acad. Sci. USA, 82, 3954–3958PubMedPubMedCentralCrossRefGoogle Scholar
  104. VanMansfeld, A. D. M., VanTeeffelen, H. A. A. M., Fluit, A. C., Baas, P. D. and Jansz, H. S. (1986). Effect of SSB protein on cleavage of single-stranded DNA by ΦX gene A protein and A* protein. Nucl. Acids Res., 14, 1845–1861PubMedPubMedCentralCrossRefGoogle Scholar
  105. Walker, G. C. (1984). Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiological Reviews, Mar. 1984, 60–93Google Scholar
  106. Watson, J. D., Hopkins, N. H., Roberts, J. W., Steitz, J. and Weiner, A. M. (1987). Molecular Biology of the Gene, vol. 1, Benjamin/Cummings, Menlo Park, 292Google Scholar
  107. Weiner, J. H., Bertsch, L. L. and Kornberg, A. (1975). The deoxyribonucleic acid unwinding protein of Escherichia coli. J. Biol. Chem., 250, 1972–1980PubMedGoogle Scholar
  108. West, S. C., Cassuto, E. and Howard-Flanders, P. (1982). Role of SSB protein in recA promoted branch migration reactions. Mol. Gen. Genet., 186, 333–338PubMedCrossRefGoogle Scholar
  109. Williams, R. C. and Spengler, S. J. (1986). Fibers of RecA protein and complexes of RecA protein and single-stranded ΦX 174 DNA as visualized by negative-stain electron microscopy. J. Mol. Biol., 187, 109–118PubMedCrossRefGoogle Scholar
  110. Williams, K. R., Spicer, E. K., Lopresti, M. B., Guggenheimer, R. A. and Chase, J. W. (1983). Limited proteolysis studies on the E. coli single-stranded DNA binding protein. J. Biol. Chem., 258, 3346–3355PubMedGoogle Scholar
  111. Williams, K. R., Murphy, J. B. and Chase, J. W. (1984). Characterization of the structural and functional defect in the E. coli single-stranded DNA binding protein encoded by the ssb1 gene. J. Biol. Chem., 259, 11804–11811PubMedGoogle Scholar
  112. Williams, K. R., Reddigari, S. and Patel, G. L. (1985). Identification of a nucleic acid helix destabilizing protein from rat liver as LDH 5. Proc. Natl Acad. Sci. USA, 82, 5260–5264PubMedPubMedCentralCrossRefGoogle Scholar
  113. Woodbury, C. P., Jr (1981). Free sliding ligands — an alternative model of DNA-protein interactions. Biopolymers, 20, 2225–2241PubMedCrossRefGoogle Scholar
  114. Zang, L. H., Maki, A. H., Murphy, J. B. and Chase, J. W. (1987). Triplet state sublevel kinetics of Trp 54 in the complex of E. coli single-strand DNA binding protein with single-stranded poly(dT). Biophys. J., 52, 867–873PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© The Contributors 1989

Authors and Affiliations

There are no affiliations available

Personalised recommendations