Phospholipids and calcification

  • Adele L. Boskey
Part of the Topics in Molecular and Structural Biology book series (TMSB)


Phospholipids are predominantly found within the membranes of cells and subcellular organdies. On average, the phospholipids account for 50 per cent of the membrane lipid, the other half being cholesterol. Together, the lipids and the proteins within membranes control cell function (Seelig and MacDonald, 1987). The phospholipids are known to play a role determining cell shape, controlling the flux of ions into and out of the cell, mediating the fusion of cells, and regulating cell metabolism. Phospholipids are also involved in the activation of certain enzymes, and provide a reservoir for the storage of compounds, or precursors of these compounds, which control cell function (e.g., prostaglandins, leukotrienes, diacylglycerides, acetylcholine, etc.).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ali, S. Y. (1976). Analysis of matrix vesicles and their role in the calcification of epiphyseal cartilage. Fed. Proc., 35, 142Google Scholar
  2. Ali, S. Y., Sajdera, S. W. and Anderson, H. C. (1970). Isolation and characterization of calcifying matrix vesicles from epiphyseal cartilage. Proc. Nat. Acad. Sci., U.S., 67, 1513–20Google Scholar
  3. Anderson, H. C. (1969). Vesicles associated with calcification in the matrix of epiphyseal cartilage. J. Cell Biol., 41, 59–72Google Scholar
  4. Anderson, H. C. (1980). Calcification Processes. Path. Ann., 15, 45–75Google Scholar
  5. Anderson, H. C. and Reynolds, J. J. (1973). Pyrophosphate stimulation of calcium uptake into cultured embryonic bones. Fine structure of matrix vesicles and their role in calcification. Devel. Biol., 34, 211–37Google Scholar
  6. Anderson, H. C., Cecil, R. and Sajdera, S. W. (1975). Calcification of rachitic rat cartilage in vitro by extracellular matrix vesicles. Am. J. Path., 79, 237–54Google Scholar
  7. Anghileri, L. J. (1972). Phospholipid-calcium complexes in experimental tumors. Experien-tia, 28, 1086–9Google Scholar
  8. Ansell, G. B. and Spanner, S. (1982). In Phospholipids (eds A. Neuberger and L. L. M. van Deenen), Elsevier, Amsterdam, pp. 1–43Google Scholar
  9. Atkin, I., Pita, J. C., Ornoy, A., Agundez, A., Castiglione, G. and Howell, D. S. (1985). Effects of vitamin D metabolites on healing of low phosphate vitamin D-deficient induced rickets in rats. Bone, 6, 113–23Google Scholar
  10. Aurora, T. S., Li, M., Cummins, H. Z. and Haines, T. H. (1985). Preparation and characterization of monodisperse unilamellar phospholipid-vesicles with selected diameters of from 300 to 600 nm. Biochim. Biophys. Acta, 820, 250–8Google Scholar
  11. Bernard, G. W. (1969). The ultrastructural interface of bone crystals and organic matrix in woven and lamellar endochondral bone. J. Dent. Res., 48, 781–8Google Scholar
  12. Berridge, M. J. (1984). Inositol triphosphate and diacylglycerol as second messengers. Biochem. J., 220, 345–60Google Scholar
  13. Billah, M. M., Lapetina, E. G. and Cuatrecasas, P. (1981). Phosphatidic acid — a possible mechanism for the production of arachidonate acid. J. Biol. Chem., 256, 5399–403Google Scholar
  14. Boggs, J., Wood, D., Moscarello, M. and Papahadjapolous, D. (1977). Lipid phase separation induced by hydrophobic protein in phosphatidylserine-phosphatidylcholine vesicles. Biochem., 16, 2325–33Google Scholar
  15. Boskey, A. L. (1981). In The Chemistry and Biology of Mineralized Connective Tissues (ed. A. Veis), Elsevier, North Holland, pp. 531–7Google Scholar
  16. Boskey, A. L. (1985). Lipid changes in the bones of the healing vitamin D deficient, phosphate deficient rat. Bone, 6, 173–8Google Scholar
  17. Boskey, A. L. and Dickson, I. (1988). Influence of Vitamin D status on the content of complexed Acidic phospholipids in Chick Diaphyseal Bone. J. Bone Min. Res., 4, 365–71Google Scholar
  18. Boskey, A. L. and Marks, S. C. Jr (1985). Mineral and matrix alterations in the bones of incisors-absent (ia/ia) osteopetrotic rat. Calcif. Tiss. Intl., 37, 287–92Google Scholar
  19. Boskey, A. L. and Posner, A. S. (1973). Conversion of amorphous calcium phosphate to microcrystalline hydroxyapatite. J. Phys. Chem., 77, 2313–7Google Scholar
  20. Boskey, A. L. and Posner, A. S. (1974). Magnesium stabilisation of amorphous calcium phosphate. Mat. Res. Bull., 9, 907–16Google Scholar
  21. Boskey, A. L. and Posner, A. S. (1976a). Extraction of a calcium-phospholipid phosphate complex from bone. Calcif. Tiss. Res., 19, 273–83Google Scholar
  22. Boskey, A. L. and Posner, A. S. (1976b). In vitro nucleation of hydroxyapatite by a bone Ca-PL-PO4 complex. Calcif. Tiss. Res., 22S, 197–201Google Scholar
  23. Boskey, A. L. and Posner, A. S. (1977). The role of synthetic and bone extracted Ca-phospholipid-PO4 complexes in hydroxyapatite formation. Calcif. Tiss. Res., 23, 251–8Google Scholar
  24. Boskey, A. L. and Posner, A. S. (1980). Effect of magnesium on lipid-induced calcification: an in vitro model for bone mineralization. Calcif. Tiss. Intl., 32, 139–43Google Scholar
  25. Boskey, A. L. and Posner, A. S. (1982). Optimal conditions for Ca-acidic phospholipid phosphate complex formation. Calcif. Tiss. Intl., 34, s1-s7Google Scholar
  26. Boskey, A. L. and Reddi, A. H. (1983). Changes in lipids during matrix induced endochondral bone formation. Calcif. Tiss. Intl., 35, 549–54Google Scholar
  27. Boskey, A. L. and Timchak, D. M. (1983). Phospholipid changes in the bones of the vitamin D deficient, phosphate deficient, immature rat. Metab. Bone Dis. Rel. Res., 5, 81–5Google Scholar
  28. Boskey, A. L. and Wientroub, S. (1986). The effect of vitamin D deficiency on rat bone lipid composition. Bone, 7, 277–81Google Scholar
  29. Boskey, A. L., Goldberg, M. R. and Posner, A. S. (1977). Calcium-phospholipid-phosphate complexes in mineralizing tissues. Proc. Soc. Exp. Biol. Med., 157, 588–91Google Scholar
  30. Boskey, A. L. Goldberg, M. R. and Posner, A. S. (1979). Effect of diphosphonates on hydroxyapatite formation induced by calcium-phospholipid-phosphate complexes. Calcif. Tiss. Intl., 27, 83–8Google Scholar
  31. Boskey, A. L. Posner, A. S., Lane, J. M., Goldberg, M. R. and Cordelia, D. M. (1980). Distribution of lipids associated with mineralization in the bovine epiphyseal growth plate. Arch. Biochem. Biophys., 199, 305–11Google Scholar
  32. Boskey, A. L., Boyan-Salyers, B. D., Burstein, L. S. and Mandel, I. D. (1981). Lipids associated with salivary stone mineralization. Arch. Oral. Biol., 26, 779–85Google Scholar
  33. Boskey, A. L., Burstein, L. S. and Mandel, I. (1983a). Phospholipids associated with parotid sialoliths. Arch. Oral. Biol., 28, 655–67Google Scholar
  34. Boskey, A. L., Vigorita, V., Stuchin, S., Sencer, O. S. and Lane, J. M. (1983b). Chemical characterization of the mineral deposits in tumoral calcinosis. Clin. Orthop., 178, 258–69Google Scholar
  35. Boskey, A. L., Lewinson, D. and Bullough, P. G. (1984). The effects of trifluoperazine on calcifying tissue in the immature rat. Proc. Soc. Exp. Biol. Med., 176, 154–63Google Scholar
  36. Boskey, A. L., Wians, F. H. and Hauschka, P. V. (1985). The effect of osteocalcin on in vitro lipid-induced hydroxyapatite formation and seeded hydroxyapatite growth. Calcif. Tiss. Intl., 37, 57–62Google Scholar
  37. Boskey, A. L., DiCarlo, E. D., Gilder, H., Donnelly, R. and Wientroub, S. (1988). The effect of short-term treatment with vitamin D metabolites on bone lipid and mineral composition in healing vitamin D-deficient rats. Bone, 185–94Google Scholar
  38. Boyan, B. and Boskey, A. L. (1984). Co-isolation of proteolipids and calcium-phospholipid-phosphate complex. Calcif. Tiss. Intl., 36, 214–18Google Scholar
  39. Boyan, B., Dereszewski, G., Hinman, B., Florence, M. and Griffith, G. (1982). In Fifth International Workshop on Calcified Tissues, Kiryat Anavim, Israel, Excerpta Medica, Amsterdam, 12–17Google Scholar
  40. Boyan, B. D., Howell, D. S., Pita, J. C., Blanco, L. and Cieslak, S. (1988). Characterization of a calcification induced in epiphyseal cartilage extracellular fluid. J. Biol. Chem., Bone, 9, 185–94Google Scholar
  41. Boyan, B. D., Landis, W. J., Knight, J., Dereszewski, G. and Zeagler, J. (1984). Microbial hydroxyapatite formation as a model of Scanning Electron Microsc., 4, 1793–1800Google Scholar
  42. Boyan, B. D., Schwartz, Z., Swain, L. D., Carnes, D. L., Jr and Zislis, T. (1989). Differential expression of phenotype by reserve zone and growth region chondrocytes in vitro. Bone, in pressGoogle Scholar
  43. Boyan, B. D., Swain, L. and Renthal, R. (1986). Proton transport by calcifiable proteolipids. In Cell Mediated Calcification and Matrix Vesicles (ed. S. Y. Ali), Elsevier Bioscience BV, 199–204Google Scholar
  44. Boyan-Salyers, B. D. (1981). In The Chemistry and Biology of Mineralized Connective Tissues (ed. A. Veis), Elsevier-North Holland, 539–42Google Scholar
  45. Boyan-Salyers, B. D. and Boskey, A. L. (1981). Relationship between proteolipids and calcium-phospholipid-phosphate complexes in Bacterionema matruchotii calcification. Calcif. Tissue Intl., 30, 167–74Google Scholar
  46. Boyan-Salyers, B. D., Vogel, J., Riggan, L., Summers, F. and Howell, R. (1978). Application of a microbial model to biologic calcification. Metab. Bone Dis. Rel. Res., 1, 143–7Google Scholar
  47. Brighton, C. T. and Hunt, R. M. (1978). Electron microscopic pyroantimonate studies of matrix vesicles and mitochondria in the rachitic growth plate. Metab. Bone Dis. Rel. Res., 1, 199–204Google Scholar
  48. Chin, J. E., Schalk, E. M., Kemick, M. L. S. and Wuthier, R. E. (1986). Effect of synthetic human parathyroid hormone on the levels of alkaline phosphatase activity and formation of alkaline phosphatase-rich matrix vesicles by primary cultures of chicken epiphyseal growth plate chondrocytes. Bone Mineral, 1, 427–36Google Scholar
  49. Cornell, R. B. and Horwitz, R. F. (1980). Apparent coordination of the biosyntheses of lipids in cultured cells: its relationship to the regulation of membrane sterol phospholipid ration and cell cycling. J. Cell. Biol., 86, 810–19Google Scholar
  50. Cullis, P. R., Hope, M. J., de Kruijff, B., Verkleij, A. J. and Tilcock, C. P. S. (1985). In Phospholipids and Cellular Regulation (ed. J. F. Kuo), vol. I, CRC Press, Boca Raton, pp. 1–37Google Scholar
  51. Dirkson, T. R. and Marinetti, G. V. (1970). Lipids of bovine enamel and dentine and human bone. Calcif. Tiss. Res., 6, 1–10Google Scholar
  52. Dmitrovsky, E. and Boskey, A. L. (1985). Calcium-acidic phospholipid-phosphate complexes in human atherosclerotic aortas. Calcif. Tiss. Intl., 37, 121–5Google Scholar
  53. Eanes, E. D. and Hailer, A. W. (1985). Liposome-mediated calcium phosphate formation in metastable solutions. Calcif. Tiss. Intl., 37, 390–4Google Scholar
  54. Eanes, E. D. and Hailer, A. W. (1987). Calcium phosphate precipitation in aqueous suspensions of phosphatidylserine-containing anionic liposomes. Calcif Tiss. Intl., 40, 43–8Google Scholar
  55. Eanes, E. D., Hailer, A. W. and Costa, J. L. (1984). Calcium phosphate formation in aqueous suspensions of multilamellar liposomes. Calcif. Tiss. Intl., 36, 421–30Google Scholar
  56. Eisenberg, E., Wuthier, R. E., Frank, R. B. and Irving, J. T. (1970) Time study of in vivo incorporation of 32P orthophosphate into phospholipids of chicken epiphyseal tissues. Calcif. Tiss. Res., 6, 32–48Google Scholar
  57. Elgavish, A., Rifkind, J. and Saktor, B. (1983). In vitro effects of vitamin D3 on the phospholipids of isolated renal brush border membranes. J. Membr. Biol., 72, 85–91Google Scholar
  58. Elsbach, P., Weiss, J., and Kao, L. (1985). The role of intramembrane Ca2+ in the hydrolysis of the phospholipids of Escherichia coli by Ca2+ dependent phospholipase. J. Biol. Chem., 260, 1618–22Google Scholar
  59. Enlow, D. H. and Conklin, J. L. (1964). A study of lipid distribution in compact bone. Anat. Rec., 148, 279Google Scholar
  60. Ennever, J., Riggan, L. J. and Vogel, J. J. (1984). Proteolipid and collagen calcification in vitro. Cytobiol, 39, 155–6Google Scholar
  61. Ennever, J., Vogel, J. J. and Levy, B. M. (1974). Lipid and bone matrix calcification in vitro. Proc. Soc. Exp. Biol. Med., 145, 1386–8Google Scholar
  62. Ennever, J., Vogel, J. J., Rider, L. J. and Boyan-Salyers, B. D. (1976). Microbiologic calcification by proteolipid. Proc. Soc. Exp. Biol. Med., 152, 147–50Google Scholar
  63. Ennever, J., Vogel, J. J. and Riggan, L. J. (1978). Phospholipids of a bone matrix calcification nucleator. J. Dent. Res., 57, 731–4Google Scholar
  64. Enoch, H. G. and Strittmatter, P. (1979). Formation and properties of 1000 A diameter, single-bilayer phospholipid vesicles. Proc. Natl. Acad. Sci. U.S., 76, 145–9Google Scholar
  65. Escarot-Charrier, B., Glorieux, F. H., van der Rest, M. and Pereira, G. (1983). Osteoblasts isolated from mouse calvariae initiate matrix mineralisation in culture. J. Cell. Biol., 96, 639–43Google Scholar
  66. Farley, J. R. and Jorch, U. M. (1983). Differential effects of phospholipids on skeletal alkaline phosphatase (EC3.1.3.1) activity in extracts, in situ and in circulation. Arch. Biochem. Biophys., 22, 477–88Google Scholar
  67. Fincham, A. G., Burkland, G. A. and Shapiro, I. M. (1972). Lipophilia of enamel matrix. A chemical investigation of the neutral lipids and lipophilic proteins of enamel. Calcif. Tiss. Res., 9, 247–59Google Scholar
  68. Folch-Pi, J. and Stoffyn, P. J. (1972). Proteolipids from membrane systems. Anals. N.Y. Acad. Sci., 195, 86–107Google Scholar
  69. Fraley, R., Wilschut, J., Duzgunes, N., Smith, C. and Papahadjopoulos, R. (1980). Studies on the mechanism of membrane fusion, role of phosphate in promoting calcium induced fusion of phospholipid vesicles. Biochem., 19, 6021–9Google Scholar
  70. Fujiwara, T., Katsura, N. and Kawanura, M. (1981). Study of protease associated with matrix vesicles. J. Dent. Res., 60B, 1232 (abstract)Google Scholar
  71. Gains, N. and Hauser, H. (1982). Characterisation of small unilamellar vesicles produced in unsonicated phosphatidic acid and phosphatidylcholine-phosphatidic acid dispersions by pH adjustments. Biochim. Biophys. Acta., 731, 31–6Google Scholar
  72. Glaser, J. H. and Conrad, H. E. (1981). Formation of matrix vesicles by cultured chick embryo chondrocytes. J. Biol. Chem., 256, 12607–11Google Scholar
  73. Goldberg, M. and Escaig, F. (1984). An autoradiographic study of the in vivo incorporation of [3H]-palmitic acid into the dentine and enamel lipids of rat incisors, with a comparison of rapid-freezing freeze-substitution fixation and aldehyde fixation. Arch. Oral. Biol., 29, 691–5Google Scholar
  74. Goldberg, M. and Escaig, F. (1987). Rapid freezing and malachite green-acrolein-osmium tetroxide freeze-substitution fixation improve visualization of extracellular lipids in rat incisor pre-dentin and dentin. J. Histochem. Cytochem., 35, 427–33Google Scholar
  75. Goldberg, M. and Septier, D. (1985). Improved lipid preservation by malachite green-glutaraldehyde fixation in rat incisor predentine and dentine. Arch. Oral Biol., 10, 717–726Google Scholar
  76. Goldberg, M., Lelous, M., Escaig, F. and Boudin, M. (1983). Lipids in the developing enamel of the rat incisor, parallel histochemical and biochemical investigation. Histochem., 78, 145–56Google Scholar
  77. Goldberg, M., Escaig, F. and Septier, D. (1984). In Tooth Enamel IV (eds. R. W. Fearnhead and S. Suga), Elsevier Science, Amsterdam 125–30Google Scholar
  78. Golub, E. E., Schattschneider, S. C., Berthold, P., Burke, A. and Shapiro, I. (1983).Google Scholar
  79. Induction of chondrocyte vesiculation in vitro. J. Biol. Chem., 258, 616–21Google Scholar
  80. Hauser, H. (1982). Methods of preparation of lipid vesicles: assessment of their suitability for drug encapsulation. Trends Pharmacol. Sci., 3, 274–7Google Scholar
  81. Hauser, H. and Phillips, M. C. (1979). Interactions of the polar groups of phospholipid bilayer membranes. Progr. Surface Membr. Sci., 13, 297–413Google Scholar
  82. Hauser, H., Darke, A. and Phillips, M. C. (1976). Ion-binding to phospholipids. Interaction of calcium with phosphatidyl serine. Eur. J. Biochem., 62, 335–44Google Scholar
  83. Haynes, H., Boyan, B., Hinman, B. and Leal, D. (1982). Proteolipid isolated from rat incisor dentine and predentine matrix vesicles. J. Dent. Res., 61, 193–5Google Scholar
  84. Hendrickson, H. S. and Fullington, J. G. (1965). Stabilities of metal complexes of phospholipids: Ca(II), Mg(II), and Ni(II) complexes of phosphatidyl serine and triphos-phoinositide. Biochem., 4, 1599–605Google Scholar
  85. Hirschman, A., Deutsch, D., Hirschman, M., Bab, I. A., Sela, J. and Muhlrad, A. (1983). Neutral protease activities in matrix vesicles from bovine fetal alveolar bone and dog osteosarcoma. Calcif. Tiss. Intl., 35, 791–7Google Scholar
  86. Holmes, R. P., Mahfouz, M., Travis, B. D., Yoss, N. L. and Keenan, M. J. (1983). The effect of membrane lipid composition on the permeability of membranes to Ca2+. Ann. N. Y. Acad. Sci., 414, 44–56Google Scholar
  87. Holwerda, D. L., Ellis, P. D. and Wuthier, R. E. (1981). Carbon-13 and phosphorus-31 nuclear magnetic resonance studies on the interaction of calcium with phosphatidylserine. Biochem., 20, 814–23Google Scholar
  88. Howell, D. S., Blanco, L., Pita, J. C. and Muniz, O. (1978). Further characterization of a nucleational agent in hypertrophic cell extracellular cartilage fluid. Metab. Bone Dis. Rel. Res., 1,155-61Google Scholar
  89. Hubscher, G. (1962). VI. The effect of metal ions on the incorporation of L-serine into phosphatidylserine. Biochim. Biophys. Acta, 57, 551–61Google Scholar
  90. Hsu, H. T. and Anderson, H. C. (1977). A simple and defined method of studying calcification by isolated matrix vesicles. Effect of ATP and vesicle phosphatase. Biochim. Biophys. Acta, 500, 162–72Google Scholar
  91. Irving, J. T. (1958). A histologic stain for newly calcified tissue. Nature, 181, 704–5Google Scholar
  92. Irving, J. T. (1959). A histologic staining method for sites of calcification in teeth and bone. Arch. Oral Biol., 1, 89–96Google Scholar
  93. Irving, J. T. (1963). The sudanophil material at sites of calcification. Arch. Oral Biol., 8, 735–45Google Scholar
  94. Joos, R. W. and Carr, C. W. (1967). The binding of calcium to mixtures of phospholipids. Proc. Soc. Exp. Biol. Med., 124, 126–8Google Scholar
  95. Katchburian, E. (1973). Membrane-bound bodies as initiators of mineralization of dentine. J. Anat., 116, 285–302Google Scholar
  96. Katsura, N. and Yamada, K. (1986). Isolation and characterization of a metalloprotease associated with chicken epiphyseal cartilage matrix vesicles. Bone., 7, 137–43Google Scholar
  97. Katsura, N., Sakata, M., Fujiwara, T., Kawamura, M. and Tomita, K. (1980). Degradation of cartilage proteoglycan by matrix vesicles. J. Dent. Res., 59B, 920Google Scholar
  98. Kohler, S. J. and Klein, M. (1977). Orientation and dynamics of phospholipid head groups in bilayers and membranes determined from 31P nuclear magnetic resonance chemical shielding tensors. Biochemistry, 16, 519–27Google Scholar
  99. Kumegawa, M., Ikeda, E., Tanaka, S., Haneji, T. J., Yora, T., Sakagishi, Y., Minami, N. and Hiramatsu, M. J. (1984). The effects of Prostaglandin E2, parathyroid hormone, 1, 25 dihydroxycholecalciferol, and cyclic nucleotide analogs on alkaline phosphatase activity in osteoblastic cells. Calcif. Tiss. Intl., 36, 72–6Google Scholar
  100. Lelous, M., Boudin, D., Salomon, S. and Polonvski, J. (1982). The affinity of type I collagen for lipid in vivo. Biochim. Biophys. Acta, 708, 26–32Google Scholar
  101. Low, M. G., and Zilvermat, D. B. (1980). Role of phosphatidylinositol in attachment of alkaline phosphatase to membranes. Biochem., 19, 390–5Google Scholar
  102. Majeska, R. J., Holwerda, D. L., and Wuthier, R. E. (1979). Localization of phosphatidylserine in isolated chick epiphyseal cartilege matrix vesicles with Trinitrobenzenesulfonate. Calcif. Tiss. Intl., 27, 41–5Google Scholar
  103. Mann, S., Hannington, J. P. and Williams, R. J. P. (1986). Phospholipid vesicles as a model system for biomineralization. Nature, 324, 565–7Google Scholar
  104. Manzoli, F. A. and Gelli, M. (1968). Quantitative determination of lipids in dental pulp (bos taurus) during development. Arch. Oral. Biol, 13, 705–12Google Scholar
  105. Matthews, J. L., Martin, J. H., Sampson, H. W., Kunin, A. S. and Roan, J. H. (1970). Mitochondrial granules in the normal and rachitic rat epiphyses. Calcif. Tiss. Res., 5, 91–9Google Scholar
  106. Matsumoto, T., Kawanobe, Y., Morita, K. and Ogata, E. (1985). Effect of 1,25-Dihydroxyvitamin D3 on phospholipid metabolism in a clonal osteoblast-like rat osteogenic sarcoma cell line. J. Biol. Chem., 260, 13704–9Google Scholar
  107. Meltzer, E., Weinreb, S., Bellorin-Font, E. and Hruska, K. A. (1982). Parathyroid hormone stimulation of renal phosphoinositide metabolism is a cyclic nucleotide-independent effect. Biochim. Biophys. Acta, 712, 258–304Google Scholar
  108. Mont, M. A., Boskey, A. L., Ryaby, J. T., Mularchuk, P., Bendo, J., diCarlo, E. and Binderman, I. (1987). Application of a culture system for analysis of differentiation and mineralization of mesenchymally-derived cells. Orthopaed. Trans., 33rd ORS, 440 (abstract)Google Scholar
  109. Murphree, S., Hsu, H. T. and Anderson, H. C. (1982). In vitro formation of crystalline apatite by matrix vesicles isolated from rachitic rat epiphyseal cartilage. Calcif. Tiss. Intl., 34, S62-S68Google Scholar
  110. Nayar, R., Hope, M. J. and Cullis, P. R. (1982). Phospholipids as adjuncts for calcium-ion stimulated release of chromaffin granule contents-implications for mechanisms of exocyto-sis. Biochem., 21, 4583–9Google Scholar
  111. Nelson, D. H. (1980). Corticosteroid-induced changes in phospholipid membranes as mediators of their action. Endocrin. Rev., 1, 180–99Google Scholar
  112. Neufeld, E. B. and Tonna, E. A. (1987). Tritiated inositol autoradiographic studies of Phosphatidylinositol syntheses and distribution in mouse skeletal/dental tissues. Anat. Rec., 218, 98 (abstract)Google Scholar
  113. Newton, C., Pangborn, W., Nir, S. and Papahadjopoulos, D. (1978). Specificity of Ca. Biochim. Biophys. Acta, 506, 281–5Google Scholar
  114. Ngoma, Z. and Davis. R. (1976). Mineralization et induction crystalline in vitro par les lipides extraits des l’os compact boivin. Path. Biol., 24, 307–11Google Scholar
  115. O’Doherty, P. J. A. (1979). 1,25 Dihydroxyvitamin D3 increases the activity of the intestinal phosphatidylcholine deacylation-reacylation cycle. Lipids, 14, 75–7Google Scholar
  116. Odutuga, A. A. and Prout, R. E. S. (1974). Lipid analysis of human enamel and dentine. Arch. Oral Biol., 19, 729–31Google Scholar
  117. Odutuga, A. A., Prout, R. E. S. and Hoare, R. J. (1975). Hydroxyapatite precipitation in vitro by lipids extracted from mammalian. Arch. Oral Biol., 20, 311–15Google Scholar
  118. Op den Kamp, J. A. F. (1979). Lipid asymmetry in membranes. Ann. Rev. Biochem., 48, 47–91Google Scholar
  119. Papahadjopoulos, D. (1974). Cholesterol and cell membrane function: A hypothesis concerning the etiology of atherosclerosis. J. Theor. Biol., 43, 329–37Google Scholar
  120. Peress, N. S., Anderson, H. C. and Sajdera, S. W. (1974). The lipids of matrix vesicles from bovine fetal epiphyseal cartilage. Calcif. Tiss. Res., 14, 275–81Google Scholar
  121. Primes, K. J., Sanchez, R. A., Metzner, E. K. and Pazel, K. M. (1982). Large scale purification of phosphatidylcholine from egg yolk phospholipids by column chromatogra-phy on hydroxyapatite prepared by the Tiselius method. J. Chromat., 236, 519–22Google Scholar
  122. Prout, R. E. S. and Odutuga, A. A. (1974a). Lipid composition of dentine and enamel of rats maintained on a diet deficient in essential fatty acids. Arch. Oral Biol., 19, 725–8Google Scholar
  123. Prout, R. E. S. and Odutuga, A. A. (1974b). The effects on the lipid composition of enamel and dentine of feeding a corn oil supplement to rats deficient in essential fatty acids. Arch. Oral Biol., 19, 955–8Google Scholar
  124. Prout, R. E. S. and Odutuga, A. A. (1974c). In vitro incorporation of [1-14C-] linoleic acid into the lipids of enamel and dentine of normal and essential fatty acid deficient rats. Arch. Oral Biol., 19, 1167–70Google Scholar
  125. Prout, R. E. S., Odutuga, A. A. and Tringe, F. C. (1973). Lipid analysis of rat enamel and dentine. Arch. Oral Biol., 18, 373–80Google Scholar
  126. Raggio, C. L., Boyan, B. D. and Boskey, A. L. (1986). In vivo hydroxyapatite formation induced by lipids. J. Bone Mineral Res., 1, 409–15Google Scholar
  127. Rakhimov, M. M., Mad’yarow, Sh. R., Kholodkova, T. P., Babaev, M. U., Rashidova, S. Sh., Kalendareva, T. I., Almatov, K. T., Mirasalikhova, N. M. and Mirkhodzhaev,Google Scholar
  128. U. Z. (1978). Influence of calcium ions on the enzymatic hydrolysis of phospholipids as a function of the physical state of the substrate. Biokhimiya, 43, 433–45Google Scholar
  129. Reith, E. J. (1983). A model for transcellular transport of calcium based on membrane fluidity and movement of calcium carriers within the more fluid microdomains of the plasma membrane. Calcif. Tiss. Intl., 35, 129–34Google Scholar
  130. Rifas, L., Shen, V. and Mitchell, V. (1982). Selective emergence of differentiated chondro-cytes during serum-free culture of cells derived from fetal rat calvaria. J. Cell Biol., 92, 493–504Google Scholar
  131. Ritter, N. M. and Boyan-Salyers, B. D. (1980). A comparison of proteolipid concentration and calcification in normal and rachitic chick epiphyseal cartilage. Fed. Proc., 39, 661 (abstract)Google Scholar
  132. Rossignol., M., Uso, T. and Thomas, P. (1985). Relationship between fluidity and ionic permeability of bilayers from natural mixtures of phospholipids. J. Membr. Biol., 87, 269–75Google Scholar
  133. Sampath, T. K., Wientroub, S. and Reddi, A. H. (1984). Extracellular matrix proteins involved in bone induction are vitamin D dependent. Biochem. Biophys. Res. Commun., 124, 829–35Google Scholar
  134. Schlesinger, M. (1981). Proteolipids. Ann. Rev. Biochem., 50, 193–206Google Scholar
  135. Schuster, G. S., Dirksen, T. R. and Harms, W. S. (1975). Effect of exogenous lipid on lipid syntheses by bone and bone cell culture. J. Dent. Res., 54, 131–9Google Scholar
  136. Seelig, J. and Macdonald, P. M. (1987). Phospholipids and proteins in Biological Membranes. 2H NMR as a method to study structure, dynamics and interactions. Acc. Chem. Res., 20, 221–8Google Scholar
  137. Shapiro, I. M. (1970a). The association of phospholipids with inorganic bone. Calcif. Tiss. Res., 5, 13–20Google Scholar
  138. Shapiro, I. M. (1970b). The phospholipids of mineralized tissues. I. Mammalian compact bone. Calcif. Tiss. Res., 5, 21–9Google Scholar
  139. Shapiro, I. M. and Greenspan, J. S. (1969). Are mitochondria directly involved in Biological Mineralization? Calcif. Tiss. Res., 3, 100–2Google Scholar
  140. Shapiro, I. M. and Wuthier, R. E. (1966). A study of the phospholipids of bovine dental tissues II. Developing bovine dental pulp. Arch. Oral Biol., 11, 501–12Google Scholar
  141. Simon, D. R., Berman, I. and Howell, D. S. (1973). Relationship of extracellular matrix vesicles to calcification in normal and healing rachitic epiphyseal cartilage. Anat. Rec., 176, 167–80Google Scholar
  142. Singer, S. J. and Nicholson, G. L. (1972). The fluid mosaic model of the structure of cell membranes. Science, 175, 720–31Google Scholar
  143. Stubbs, C. D. and Smith, A. D. (1984). The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochim. Biophys. Acta, 779, 89–137Google Scholar
  144. Swain, L. D. and Boyan, B. D. (1988). Ion translocating properties of calcifiable proteolipids. J. Dent. Res., 67, 526–30Google Scholar
  145. Takazoe, I., Vogel, J. J. and Ennever, J. (1970). Calcium hydroxyapatite nucleation by lipid extract of Bacterionema Matruchotti. J. Dent. Res., 49, 395–8Google Scholar
  146. Trauble, H. (1973). Phase transitions in lipids. Biomembranes, 3, 197–227Google Scholar
  147. Tyson, C. A., Zande, H. V. and Green, D. E. (1976). Phospholipids as ionophores J. Biol. Chem., 251, 1326–32Google Scholar
  148. Vaananen, H. K. (1980). Calcium incorporation in matrix vesicles isolated from chicken epiphyseal cartilage. Calcif. Tiss. Intl., 30, 227–32Google Scholar
  149. Vannanen, H. K., Morris, D. C. and Anderson, H. C. (1983). Calcification of cartilage matrix in chondrocyte cultures derived from rachitic rat growth plate cartilage. Metab. Bone Dis. Rel. Res., 5, 87–92Google Scholar
  150. Vogel, J. J. and Boyan-Salyers, B. D. (1976). Acidic lipids associated with the local mechanism of calcification. Clin. Orthop., 118, 230–41Google Scholar
  151. Vogel, J. J. and Ennever, J. (1971). The role of lipoprotein in the intracellular hydroxyapatite formation in Bacterionema Matruchotti. Clin. Orthoped. Rel. Res., 78, 218–22Google Scholar
  152. Vogel, J. J., Campbell, M. M. and Ennever, J. (1973). Calcification of a lysozyeinositol phosphatide. Proc. Soc. Exp. Biol. Med., 143, 677–81Google Scholar
  153. Warren, G. B., Toon, P. A., Birdsail, N. J. M., Lee, A. G. and Metcalfe, J. C. (1974). Titrations of the activity of pure adenosine triphosphate-lipid complexes. Biochem., 13, 5501–8Google Scholar
  154. Warschawsky, H. and Smith, C. E. (1974). Morphological classification of rat incisor ameloblasts. Anat. Rec., 179, 423–46Google Scholar
  155. Weibull, C., Christiansson, A. and Carlemalm, E. (1983). Extraction of membrane lipids during fixation dehydration and embedding of Acholeplasma Laidlawn-cells for electron microscopy. J. Microsc., 129, 201–7Google Scholar
  156. Wuthier, R. E. (1968). Lipids of mineralizing epiphyseal tissues in the bovine fetus. J. Lipid Res., 9, 68–78Google Scholar
  157. Wuthier, R. E. (1971). Zonal analysis of phospholipids in the epiphyseal cartilage and bone of normal and rachitic chickens and pigs. Calcif. Tiss. Res., 8, 36–53Google Scholar
  158. Wuthier, R. E. (1973). The role of phospholipids in biologic calcification. Clin. Orthoped., 90, 191–200Google Scholar
  159. Wuthier, R. E. (1977). Electrolytes of isolated epiphyseal chondrocytes, matrix vesicles, and extracellular fluid. Calcif. Tiss. Res., 23, 125–33Google Scholar
  160. Wuthier, R. E. (1982). The role of phospholipid-calcium-phosphate complexes in biological mineralization. In Anghileri, L. J. and A. M. Tuffet-Anghileri (eds), The Role of Calcium in Biological Systems, vol. I, CRC Press, Boca Raton, 41–70Google Scholar
  161. Wuthier, R. E. (1984). In Linde, A. (ed.) Dentin and Dentingenesis, vol. II, CRC Press, Boca Raton, 93–106Google Scholar
  162. Wuthier, R. E., Chin, J. E., Hale, J. E., Register, T. C., Hale, L. V. and Ishikawa, Y. (1985). Isolation and characterization of calcium accumulating matrix vesicles from chondrocytes of chicken epiphyseal growth plate cartilage in primary culture. J. Biol. Chem., 260, 15972–9Google Scholar
  163. Wuthier, R. E. and Cummins, J. W. (1974). In vitro incorporation of 3H serine into phospholipid of proliferating and calcifying epiphyseal cartilage and liver. Biochim. Biophys. Acta, 337, 50–9Google Scholar
  164. Wuthier, R. E. and Gore, S. (1977). Participation of inorganic ions and phospholipids in isolated cell, membrane and matrix vesicle fractions. Evidence for Ca: Pi: acidic phospholipid complexes. Calcif. Tiss. Res., 24, 163–71Google Scholar
  165. Wuthier, R. E., Majeska, R. J. and Collins, G. M. (1977). Biosynthesis of matrix vesicles in epiphyseal cartilage. I. In vivo incorporation of 32P orthophosphate into phospholipids of chondrocyte, membrane and matrix vesicle fractions. Calcif. Tiss. Res., 23, 135–9Google Scholar
  166. Wuthier, R. E., Wians, F. H., Giancola, S. and Dragic, S. S. (1978). In vitro biosynthesis of phospholipids by chondrocytes and matrix vesicles of epiphsyseal cartilage. Biochem., 17, 1431–6Google Scholar
  167. Yaari, A. M., Shapiro, I. M. and Brown, C. E. K. (1982). Evidence that phosphatidylserine and inorganic phosphate may mediate transport during calcification. Biochem. Biophys. Res. Commun., 105, 778–84Google Scholar

Copyright information

© The contributors 1989

Authors and Affiliations

  • Adele L. Boskey

There are no affiliations available

Personalised recommendations