The interaction of phosphoproteins with calcium phosphate

  • C. Holt
  • M. J. J. M. van Kemenade
Part of the Topics in Molecular and Structural Biology book series (TMSB)


This review is concerned with some of the well-characterised phosphoproteins that interact with calcium phosphate as part of their biological function, and phosphoproteins that have been used frequently in laboratory studies of phosphoprotein-calcium phosphate interactions. This heterogeneous group comprises the phosphophoryns from teeth, the bone phosphoproteins, the caseins from milk, the statherins and acidic proline-rich proteins of saliva, osteonectin and the egg phosvitins. The prominence given here to the caseins is largely a reflection of our own research interests, but it can be justified as bringing this well-studied group of phosphoproteins more to the attention of researchers in the field of tissue mineralisation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Addadi, L. and Weiner, S. (1985). Interactions between acidic proteins and crystals: Stereochemical requirements in biomineralization. Proc. Natl Acad. Sci. USA, 82, 4110–14Google Scholar
  2. Addadi, L., Berkovitch-Yellin, Z., Weissbuch, I., Mil, J. van, Shimon, L. J. W., Lahav, M. and Leiserowitz, L. (1985). Growth and dissolution of organic crystals with ‘tailor-made’ inhibitors — Implications in stereochemistry and materials science. Angew. Chem. Int. Ed. Engl., 24, 466–85Google Scholar
  3. Andrews, A. L., Atkinson, D., Evans, M. T. A., Finer, E. G., Green, J. P., Phillips, M. C. and Robertson, R. N. (1979). The conformation and aggregation of bovine β-casein A. 1. Molecular aspects of thermal aggregation. Biopolymers, 18, 1105–21Google Scholar
  4. Azen, E. A. (1978). Genetic protein polymorphisms in human saliva: an interpretive review. Biochem. Genet., 16, 79–99Google Scholar
  5. Banks, E., Nakajima, S., Shapiro, L. C., Tilevitz, O., Alonzo, J. R. and Chianelli, R. R. (1977). Fibrous apatite grown on modified collagen. Science, 198, 1164–6Google Scholar
  6. Bennick, A. (1975). Chemical and physical characteristics of a phosphoprotein from human parotid saliva. Biochem. J., 145, 557–67Google Scholar
  7. Bennick, A., Mclaughlin, A. C., Grey, A. A. and Madapallimattam, G. (1981). The location and nature of calcium-binding stites in salivary acidic proline-rich phosphoproteins. J. Biol. Chem., 256, 4741–6Google Scholar
  8. Bernstein, F. C., Koetzle, T. F. Williams, G. J. B., Meyer, E. F., Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T. and Tasumi, M. (1977). The Protein Data Bank: a computer-based archival file for macromolecular structures. J. Molec. Biol., 112, 535–42Google Scholar
  9. Bhandari, D. G., Levine, B. A., Trayer, I. P. and Yeadon, M. E. (1986). 1H-NMR study of mobility and conformational constraints within the proline-rich N-terminal of the LC1 alkali light chain of skeletal myosin. Eur. J. Biochem., 160, 349–56Google Scholar
  10. Boskey, A. L. and Posner, A. S. (1973). Conversation of amorphous calcium phosphate to microcrystalline hydroxyapatite. A pH-dependent, solution-mediated, solid-solid conversion. J. Phys. Chem., 77, 2313–17Google Scholar
  11. Braunlin, W. H., Vogel, H. J., Drakenberg, T. and Bennick, A. (1986). A calcium-43 NMR study of calcium binding to an acidic proline-rich phosphoprotein from human saliva. Biochemistry, NY, 25, 584–9Google Scholar
  12. Braunlin, W. H., Vogel, H. J. and Forsen, S. (1984). Potassium-39 and sodium-23 NMR studies of cation binding to phosvitin. Eur. J. Biochem., 142, 139–44Google Scholar
  13. Brignon, G., Ribadeau Dumas, B. and Mercier, J.-C. (1976). First elements of the primary structure of bovine αs2-caseins. FEBS Lett., 71, 111–16Google Scholar
  14. Brignon, G., Ribadeau Dumas, B., Mercier, J.-C, Pelessier, J. P. and Das, B. C. (1977). Complete amino acid sequence of bovine αs2-casein. FEBS Lett., 76, 274–9Google Scholar
  15. Byrne, B. M., Schip, A. D. van het, Klundert, J. A. M. van de, Arnberg, A. C, Gruber, M. and AB, G. (1984). Amino acid sequence of phosvitin derived from the nucleotide sequence of part of the chicken vitellogenin gene. Biochemistry, NY, 23, 4275–9Google Scholar
  16. Chaplin, L. C., Clark, D. C. and Smith, L. J. (1988). The secondary structure of peptides derived from caseins: a circular dichroism study. Biochim. Biophys. Acta, 956, 162–72Google Scholar
  17. Chernov, A. A. (1984). In Modern Crystallography III, Crystal Growth (ed. A. A. Chernov), Springer, Berlin, chh. 1, 4 and 5Google Scholar
  18. Cocking-Johnson, D., Kampen, C. L. van and Sauk, J. J. (1983). Electron-microscopical studies of conformational changes in dentinal phosphophoryn. Collagen Rel. Res., 3, 505–10Google Scholar
  19. Cookson, D. J., Levine, B. A., Williams, R. J. P., Jontell, M., Linde, A. and Bernard, B. de. (1980). Cation binding by the rat-incisor-dentine phosphoprotein. Eur. J. Biochem., 110, 273–8Google Scholar
  20. Creamer, L. K., Richardson, T. and Parry, D. A. D. (1981). Secondary structure of bovine αs1- and β-casein in solution. Archs Biochem. Biophys., 211, 689–96Google Scholar
  21. Curley-Joseph, J. and Veis, A. (1979). The nature of covalent complexes of phosphoproteins with collagen in the bovine dentin matrix. J. Dent. Res., 58, 1625–33Google Scholar
  22. Dalgleish, D. G. and Parker, T. G. (1980). Binding of calcium ions to bovine αs1-casein and precipitability of the protein-calcium ion complexes. J. Dairy Res., 47, 113–22Google Scholar
  23. De Carlo, A., Multigner, L., Lafont, H., Lombardo, D. and Sarles, H. (1984). The molecular characteristics of a human pancreatic acidic phosphoprotein that inhibits calcium carbonate crystal growth. Biochem. J., 222, 669–77Google Scholar
  24. Deber, C. M., Bovey, F. A., Carver, J. P. and Blout, E. R. (1970). Nuclear magnetic reasonance evidence for cis-peptide bonds in proline oligomers. J. Am. Chem. Soc., 92, 6191–8Google Scholar
  25. Elgavish, G. A., Hay, D. I. and Schlesinger, D. H. (1984). 1H and 31P nuclear magnetic resonance studies of human salivary statherin. Int. J. Peptide Protein Res., 23, 230–4Google Scholar
  26. Eliopoulos, E., Geddes, A. J., Brett, M., Pappin, D. J. C. and Findlay, J. B. C. (1982). A structural model for the chromophore-binding domain of ovine rhodopsin. Int. J. Biol. Macromol., 4, 263–68Google Scholar
  27. Engel, J. Taylor, W. Paulsson, M., Sage, H. and Hogan, B. (1987). Calcium binding domains and calcium-induced conformational transition of SPARC/BM-40/Osteonectin an extracellular glycoprotein expressed in mineralized and nonmineralized tissues. Biochemistry, NY, 26, 6958–65Google Scholar
  28. Fenselau, C., Heller, D. N., Miller, M. S. and White, H. B. III. (1985). Phosphorylation sitesGoogle Scholar
  29. in riboflavin binding protein characterized by fast atom bombardment mass spectrometry. Anal. Biochem., 150, 309–14Google Scholar
  30. Fujisawa, R., Kuboki, Y. and Sasaki, S. (1986). Changes in interaction of bovine dentin phosphophoryn with calcium and hydroxyapatite by chemical modifications. Calcif. Tiss. Int., 39, 248–51Google Scholar
  31. Glimcher, M. J. (1984). Recent studies of the mineral phase in bone and its possible linkage to the organic matrix by protein-bound phosphate bonds. Phil. Trans. R. Soc. Lond. B., 304, 479–508Google Scholar
  32. Graham, E. R. B., Malcolm, G. N. and McKenzie, H. A. (1984). On the isolation and conformation of bovine-casein A. Int. J. Biol. Macromol., 6, 155–61Google Scholar
  33. Griffin, M. C. A., Price, J. C. and Martin, S. R. (1986). Effect of alcohols on the structure of caseins: circular dichroism studies of kappa-casein A. Int. J. Biol. Macromol., 8, 367–71Google Scholar
  34. Grizzuti, K. and Perlmann, G. E. (1973). Binding of magnesium and calcium ions to the phosphoglycoprotein phosvitin. Biochemistry, NY, 12, 4399–403Google Scholar
  35. Grøn, P. and Hay, D. I. (1976). Inhibition of calcium phosphate precipitation by human salivary secretions. Archs Oral Biol., 21, 201–5Google Scholar
  36. Grosclaude, F., Mahé, M.-F. and Ribadeau Dumas, B. (1973). Structure primaire de la caseine αs1 et de la caseine β bovine. Eur. J. Biochem., 40, 323–4Google Scholar
  37. Hartman, P. (1973). In Crystal Growth: An Introduction (ed. P. Hartman), North Holland, Amsterdam, Chapter 14Google Scholar
  38. Hartman, P. (1982). Crystal faces: structure and growth. Geol. Mijnbouw, 61, 313–20Google Scholar
  39. Hay, D. I., Moreno, E. C. and Schlesinger, D. H. (1979). Phosphoprotein inhibitors of calcium phosphate precipitation from salivary secretions. Inorganic Perspectives in Biology and Medicine, 2, 271–85Google Scholar
  40. Hay, D. I., Schluckebier, S. K. and Moreno, E. C. (1986). Saturation of human salivary secretions with respect to calcite and inhibition of calcium carbonate precipitation by salivary constituents. Calcif. Tiss. Int., 39, 151–60Google Scholar
  41. Hay, D. I., Carlson, E. R., Schluckebier, S. K., Moreno, E. C. and Schlesinger, D. H. (1987). Inhibition of calcium phosphate precipitation by human salivary acidic proline-rich proteins: structure-activity relationships. Calcif. Tiss. Int., 40, 126–32Google Scholar
  42. Holt, C. (1982). Inorganic constituents of milk. III. The colloidal calcium phosphate of cow’s milk. J. Dairy Res., 49, 29–38Google Scholar
  43. Holt, C. (1983). Swelling of Golgi vesicles in mammary secretory cells and its relation to the yield and quantitative composition of milk. J. Theor. Biol., 101, 247–61Google Scholar
  44. Holt, C. and Sawyer, L. (1988). Primary and predicted secondary structures of the caseins in relation to their biological function. Protein Engineering, 2, 251–9Google Scholar
  45. Holt, C., Davies, D. T. and Law, A. J. R. (1986). Effects of colloidal calcium phosphate content and free calcium ion concentration in the milk serum on the dissociation of bovine casein micelles. J. Dairy Res., 53, 557–72Google Scholar
  46. Holt, C, van Kemenade, M. J. J. M., Harries, J. E., Nelson, L. S., Jr, Bailey, R. T., Hukins, D. W. L., Hasnain, S. S. and de Bruyn, P. L. (1989a). Preparation of amorphous calcium magnesium phosphates at pH7 and characterization by X-ray absorption and Fourier transform infrared spectroscopy. J. Cryst. Growth, 92, 239–52Google Scholar
  47. Holt, C., van Kemenade, M. J. J. M., Nelson, L. S., Jr, Hukins, D. W. L., Bailey, R. T., Harries, J. E., Hasnain, S. S. and de Bruyn, P. L. (1989b). Amorphous calcium phosphates prepared at pH 6.5 and 6.0. Mater. Res. Bull., 23, 55–62Google Scholar
  48. Humphrey, R. S. and Jolley, K. W. (1982). 31P-NMR studies of bovine β-casein. Biochim. Biophys. Acta, 708, 294–9Google Scholar
  49. James, M. N. G. and Sielecki, A. R. (1986). Molecular structure of an aspartic proteinase zymogen, porcine pepsinogen, at 1.8 A resolution. Nature, Lond., 319, 33–8Google Scholar
  50. Jenness, R. and Holt, C. (1987). Casein and lactose concentrations in milk of 31 species are negatively correlated. Experientia, 43, 1015–18Google Scholar
  51. Jontell, M. and Linde, A. (1983). Non-collagenous proteins of predentine from dentinogeni-cally active bovine teeth. Biochem. J., 214, 769–76Google Scholar
  52. Van Kemenade, M. J. J. M. (1988). Influence of casein on precipitation of calcium phosphates. Thesis, University of Utrecht, Utrecht, The NetherlandsGoogle Scholar
  53. Van Kemenade, M. J. J. M., and de Bruyn, P. L. (1987). A kinetic study of precipitation from supersaturated calcium phosphate solutions. /. Colloid Interface Sci., 118, 564–85Google Scholar
  54. Van Kemenade, M. J. J. M., and de Bruyn, P. L. (1989). The influence of casein on the kinetics of hydroxyapatite precipitation. J. Colloid Interface Sci. (in press)Google Scholar
  55. Knoop, A.-M., Knoop, E. and Wiechen, A. (1979). Sub-structure of synthetic casein micelles. J. Dairy Res., 46, 347–50Google Scholar
  56. Kousvelari, E. E., Baratz, R. S., Burke, B. and Oppenheim, F. G. (1980). Immunochemical identification and determination of proline-rich proteins in salivary secretions, enamel pellicle, and glandular tissue specimens. J. Dent. Res., 59, 1430–38Google Scholar
  57. Kuhn, N. J. and White, A. (1977). The role of nucleoside diphosphatase in a uridine nucleotide cycle associated with lactose synthesis in rat mammary-gland Golgi apparatus. Biochem. J., 168, 423–33Google Scholar
  58. Landis, W. J., Sanzome, C. F., Brickley-Parsons, D. and Glimcher, M. J. (1984). Radioautographic visualization and biochemical identification of O-phosphoserine- and O-phosphothreonine-containing phosphoproteins in mineralizing embryonic chick bone. J. Cell Biol., 98, 986–90Google Scholar
  59. Lee, S. L., Glonek, T. and Glimcher, M. J. (1983). 31P nuclear magnetic resonance spectroscopic evidence for ternary complex formation of fetal dentin phosphoprotein with calcium and inorganic orthophosphate ions. Calcif. Tiss. Int., 35, 815–18Google Scholar
  60. Lee, S. L., Veis, A. and Glonek, T. (1977). Dentin phosphoprotein: an extracellular calcium-binding protein. Biochemistry, NY, 16, 2971–9Google Scholar
  61. Linde, A. (1985). In The Chemistry and Biology of Mineralized Tissues (ed. W. T. Butler), EBSCO-media, Birmingham, Alabama, pp. 344–55Google Scholar
  62. Liu, S. T., Hurivitz, A. and Nancollas, G. H. (1982). The influence of polyphosphate ions on the precipitation of calcium oxalate. J. Urol., 127, 351–5Google Scholar
  63. Lyster, R. L. J., Mann, S., Parker, S. B. and Williams, R. J. P. (1984). Nature of micellar calcium phosphate in cows’ milk as studied by high-resolution microscopy. Biochim. Biophys. Acta, 801, 315–17Google Scholar
  64. MacDougal, M., Zeichner-David, M., Bringas, P. and Slavkin, H. (1985). In The Chemistry and Biology of Mineralized Tissues (ed. W. T. Butler), EBSCO-media, Birmingham, Alabama, pp. 177–81Google Scholar
  65. Madsen, H.-E. L. and Thorvardarson, G. (1984). Precipitation of calcium phosphate from moderately acid solution J. Cryst. Growth, 66, 369–76Google Scholar
  66. Marsh, M. E. (1986). Biomineralization in the presence of calcium-binding phosphoprotein particles. J. Exp. Zool., 239, 207–20Google Scholar
  67. Mason, I. J., Murphy, D., Munke, M., Francke, U., Elliott, R. W. and Hogan, B. L. M. (1986a). Developmental and transformation-sensitive expression of the SPARC gene on mouse chromosome 11. EMBO J., 5, 1831–7Google Scholar
  68. Mason, I. J., Tatlor, A., Williams, J. G., Sage, H. and Hogan, B. L. M. (1986b). Evidence from molecular cloning that SPARC, a major product of mouse embryo parietal endoderm, is related to an endothelial cell ‘culture shock’ glycoprotein of Mr 43,000. EMBO J., 5, 1465–72Google Scholar
  69. Mercier, J.-C. and Gaye, P. (1983). In Biochemistry of Lactation (ed. T. B. Mepham), Elsevier, Amsterdam, pp. 177–227Google Scholar
  70. Mercier, J.-C., Grosclaude, F. and Ribadeau Dumas, B. (1971). Structure primaire de la caseine αs1-bovine. Séquence complete. Eur. J. Biochem., 23, 41–51Google Scholar
  71. Mercier, J.-C., Brignon, G. and Ribadeau Dumas, B. (1973). Structure primaire de la caseine K-bovine. Sequence complete. Eur. J. Biochem., 35, 222–35Google Scholar
  72. Meyer, J. L. and Eanes, E. D. (1978). A thermodynamic analysis of the secondary transition in the spontaneous precipitation of calcium phosphate. Calcif. Tiss. Res., 25, 209–16Google Scholar
  73. Montalto, G., Multigner, L., Sarles, H. and De Carlo, A. (1984). Protein inhibitors of crystallization. Characterization and potential role in calcium lithiasis. Nephrologie, 5, 155–7Google Scholar
  74. Moreno, E. C., Kresak, M. and Hay, D. I. (1982). Adsorption thermodynamics of acidic proline-rich human salivary proteins onto calcium apatites. J. Biol. Chem., 257, 2981–9Google Scholar
  75. Moreno, E. C., Varughese, K. and Hay, D. I. (1979). Effect of human salivary proteins on the precipitation kinetics of calcium phosphate. Calcif. Tiss. Int., 28, 7–16Google Scholar
  76. Nawrot, C. F., Campbell, D. G., Schroeder, J. K. and Valkenburg, M. van (1976). Dental phosphoprotein-induced formation of hydroxylapatite during in vitro synthesis of amorphous calcium phosphate. Biochemistry, NY, 15, 3445–9Google Scholar
  77. Neville, M. C. and Staiert, P. A. (1983). Calcium requirement for lactose synthesis by isolated Golgi vesicles from mouse mammary gland. J. Cell Biol., 97, 442aGoogle Scholar
  78. Oppenheim, F. G., Offner, G. D. and Troxler, R. F. (1982). Phosphoproteins in the parotid saliva from the subhuman primate Macaca fascicularis. J. Biol. Chem., 257, 9271–82Google Scholar
  79. Orci, L. Ravazzola, M. and Anderson, R. G. W. (1987). The condensing vacuole of exocrine cells is more acidic than the mature secretory vesicle. Nature, Lond., 326, 77–9Google Scholar
  80. Otsuka, K., Yao, K.-L., Wasi, S., Tung, P. S., Aubin, J. E., Sodek, J. and Termine, J. D. (1984). Biosynthesis of osteonectin by fetal porcine calvarial cells in vitro. J. Biol. Chem., 259, 9805–12Google Scholar
  81. Parker, T. G. and Dalgleish, D. G. (1981). Binding of calcium ions to bovine β-casein. J. Dairy Res., 48, 71–6Google Scholar
  82. Payens, T. A. J. and Vreeman, H. J. (1982). In Solution Behavior of Surfactants (eds K. L. Mittal and E. J. Fendler), Plenum Press, New York, 543–71Google Scholar
  83. Perlmann, G. E. (1973). Phosvitin, a phosphoglycoprotein. Israeli. Chem., 11, 393–405Google Scholar
  84. Perlmann, G. E. and Grizzuti, K. (1971). Conformational transition of the phosphoprotein phosvitin. Random conformation→β structure. Biochemistry, NY, 10, 258–64Google Scholar
  85. Prescott, B., Renugopalakrishnan, V., Glimcher, M. J., Bhushan, A. and Thomas, G. J., Jr (1986). A Raman spectroscopic study of hen egg yolk phosvitin: structures in solution and in the solid state. Biochemistry, NY, 25, 2792–98Google Scholar
  86. Prince, C. W., Oosawa, T., Butler, W. T., Tomana, M., Bhown, A. S., Bhown, M. and Schrohenloher, R. E. (1987). Isolation, characterization, and biosynthesis of a phosphory-lated glycoprotein from rat bone. J. Biol. Chem., 262, 2900–7Google Scholar
  87. Raap, J., Kerling, K. E. T., Vreeman, H. J. and Visser, S. (1983). Peptide substrates for chymosin (rennin): Conformational studies of к-casein and some к-casein related oli-gopeptides by circular dichroism and secondary structure prediction. Archs Biochem. Biophys., 221, 117–24Google Scholar
  88. Renugopalakrishnan, V., Horowitz, P. M., and Glimcher, M. J. (1985). Structural studies of phosvitin in solution and in the solid state. J. Biol. Chem., 260, 11406–13Google Scholar
  89. Renugopalakrishnan, V., Uchiyama, A., Horowitz, P. M., Rapaka, R. S., Suzuki, M., Lefteriou, B. and Glimcher, M. J. (1986). Preliminary studies of the secondary structure in solution of two phosphoproteins of chicken bone matrix by circular dichroism and Fourier transform-infrared spectroscopy. Calcif. Tiss. Int., 39, 166–70Google Scholar
  90. Ribadeau Dumas, B., Brignon, G., Grosclaude, F. and Mercier, J.-C. (1972). Structure primaire de la caséine β bovine. Séquence complete. Eur. I. Biochem., 25, 505–14Google Scholar
  91. Rollema, H. S., Vreeman, H. J. and Brinkhuis, J. A. (1984). In 22nd Congress Ampère on Magnetic Resonance and Related Phenomena (eds K. A. Muller, R. Kind and J. Roos), Zurich Ampère Committee, Zurich, 494–5Google Scholar
  92. Romberg, R. W., Werness, P. G., Lollar, P., Riggs, B. L. and Mann, K. G. (1985). Isolation and characterization of native adult osteonectin. J. Biol. Chem., 260, 2728–36Google Scholar
  93. Romberg, R. W., Werness, P. G., Riggs, B. L. and Mann, K. G. (1986). Inhibition of hydroxyapatite crystal growth by bone-specific and other calcium-binding proteins. Biochemistry, NY, 25, 1176–80Google Scholar
  94. Rosenstein, R. W. and Taborsky, G. (1970). Nonphosphorylated serine residues in phosvitin. Biochemistry, NY, 9, 658–9Google Scholar
  95. Saitoh, E., Isemura, S. and Sanada, K. (1985). Inhibition of calcium-carbonate precipitation by human salivary proline-rich phosphoproteins. Archs Oral Biol., 30, 641–3Google Scholar
  96. Sawyer, L., Fothergill-Gilmore, L. A. and Russell, G. A. (1986). The predicted secondary structure of enolase. Biochem. J., 236, 127–30Google Scholar
  97. Schlesinger, D. H. and Hay, D. I. (1977). Complete covalent structure of statherin, a tyrosine-rich acidic peptide which inhibits calcium phosphate precipitation from human parotid saliva. J. Biol. Chem., 252, 1689–95Google Scholar
  98. Schlesinger, D. H. and Hay, D. I. (1986). Complete covalent structure of a proline-rich phosphoprotein, PRP-2, an inhibitor of calcium phosphate crystal growth from human parotid saliva. Int. J. Peptide Protein Res., 27, 373–79Google Scholar
  99. Schmidt, D. G. (1982). In Developments in Dairy Chemistry, Vol. 1 (ed. P. F. Fox), Applied Science Publishers Ltd, Barking, UK, 61–86Google Scholar
  100. Slattery, C. W. and Evard, R. (1973). A model for the formation and structure of casein micelles from subunits of variable composition. Biochim. Biophys. Acta, 317, 529–38Google Scholar
  101. Sleigh, R. W., Mackinlay, A. G. and Pope, J. M. (1983). NMR studies of the phosphoserine regions of bovine αs1- and β-casein. Biochim. Biophys. Acta, 742, 175–83Google Scholar
  102. Sodek, J., Domenicucci, C., Zung, P., Kuwata, F. and Wasi, S. (1986). In Cell Mediated Calcification and Matrix Vesicles (ed. S. Yousuf Ali), Elsevier, Amsterdam, 135–41Google Scholar
  103. Stetler-Stevenson, W. G. and Veis, A. (1983). Bovine dentin phosphophoryn: Composition and molecular weight. Biochemistry, NY, 22, 4326–35Google Scholar
  104. Stetler-Stevenson, W. G. and Veis, A. (1987). Bovine dentin phosphophoryn: Calcium ion binding properties of a high molecular weight preparation. Calcif. Tiss. Int., 40, 97–102Google Scholar
  105. Taborsky, G. (1970). Effect of freezing and thawing on the conformation of phosvitin. J. Biol. Chem., 245, 1054–62Google Scholar
  106. Termine, J. D. and Posner, A. S. (1970). Calcium phosphate formation in vitro. I. Factors affecting initial phase separation. Archs Biochem. Biophys., 140, 307–17Google Scholar
  107. Termine, J. D. and Conn, K. M. (1976). Inhibition of apatite formation by phosphorylated metabolites and macromolecules. Calcif. Tiss. Res., 22, 149–57Google Scholar
  108. Termine, J. D., Eanes, E. D. and Conn, K. M. (1980). Phosphoprotein modulation of apatite crystallization. Calcif. Tiss. Int., 31, 247–51Google Scholar
  109. Termine, J. D., Kleinman, H. K., Whitson, S. W., Conn, K. M., McGarvey, M. L. and Martin, G. R. (1981). Osteonectin, a bone-specific protein linking mineral to collagen. Cell, 26, 99–105Google Scholar
  110. Traub, W. and Perimann, G. E. (1972). X-ray study of phosvitin, the phosphoglycoprotein in hens’ egg yolk. Israeli. Chem., 10, 655–58Google Scholar
  111. Uchiyama, A., Lefteriou, B. and Glimcher, M. J. (1985). In The Chemistry and Biology of Mineralized Tissues (ed. W. T. Butler), EBSCO-media, Birmingham, Alabama, 182–4Google Scholar
  112. Udich, H.-J., Hoft, H. D. and Bornig, H. (1986). Effect of phosphoprotein on precipitation and crystallization of calcium phosphate salts. An in vitro study using an agar gel matrix model. Biomed. Biochim. Acta., 45, 703–11Google Scholar
  113. Veis, A. (1985). In The Chemistry and Biology of Mineralized Tissues (ed. W. T. Butler), EBSCO-media, Birmingham, Albama, 170–6Google Scholar
  114. Vogel, H. J. (1983). Structure of hen phosvitin: A 31P NMR, 1H NMR, and laser photochemi-cally induced dynamic nuclear polarization 1H NMR study. Biochemistry, NY, 22, 668–74Google Scholar
  115. West, D. W. and Clegg, R. A. (1981). Golgi vesicles isolated from rat mammary tissue contain endogenous caseins and 0.1 mM free calcium. Biochem. Soc. Trans., 9, 468Google Scholar
  116. Williams, R. J. P. (1975). Phases and phase structure in biological systems. Biochim. Biophys. Acta, 416, 237–86Google Scholar
  117. Williams, S. P., Bridger, W. A. and James, M. N. G. (1986). Characterization of the phosphoserine of pepsinogen using 31P nuclear magnetic resonance: Corroboration of X-ray crystallographic results. Biochemistry, NY, 25, 6655–59Google Scholar
  118. Wong, R. S. C. and Bennick, A. (1980). The primary structure of a salivary calcium-binding proline-rich phosphoprotein (protein C), a possible precursor of a related salivary protein A. J. Biol. Chem., 255, 5943–8Google Scholar
  119. Wuthier, R. E. (1986). In Cell Mediated Calcification and Matrix Vesicles (ed. S. Yousuf Ali), Elsevier, Amsterdam, 47–55Google Scholar
  120. Zanette, D., Monaco, H. L., Zanotti, G. and Spadon, P. (1984). Crystallization of hen eggwhite riboflavin binding protein. J. molec. Biol., 180, 1185–7Google Scholar

Copyright information

© The contributors 1989

Authors and Affiliations

  • C. Holt
  • M. J. J. M. van Kemenade

There are no affiliations available

Personalised recommendations