Some characteristics of mineralised collagen

  • Sidney Lees
Part of the Topics in Molecular and Structural Biology book series (TMSB)


According to Albert Szent-Gyorgyi, ‘Discovery consists of looking at the same thing as everyone else and thinking something different.’ The ideas and suggestions presented in this chapter do not quite satisfy Szent-Gyorgyi’s paradigm, since some new facts were added to the older data. However, the previously available information should have sufficed for an acute observer. It is well known that the type I collagen in bone differs from that in soft tissue. For example, the collagen in bone cannot be split by collagenase until the tissue is demineralised. Also, the collagen in bone requires a much higher temperature to gelatinise.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Batchelder, L. S., Sullivan, C. E., Jelinski, L. W. and Torchia, D. A. (1982). Characterization of leucine side-chain reorientation in collagen fibrils by solid-state 2H NMR. Proc. Natl Acad. Sci. USA, 79, 386–9Google Scholar
  2. Bonar, L. C. and Glimcher, M. J. (1970). Thermal denaturation of mineralized and demineralized bone collagens. J. Ultrastruct. Res., 32, 545–51Google Scholar
  3. Bonar, L. C., Lees, S. and Mook, H. A. (1985). Neutron diffraction studies of collagen in fully mineralized bone. J. Molec. Biol., 181, 265–70Google Scholar
  4. Brady, G. W., Satkowski, M., Foos, D. and Benheim, C. J. (1986). Environmental influences on DNA superhelicity. Ionic strength and temperature effects on superhelix conformation in solution. In Biomolecular Stereodynamics, Vol. IV (eds R. H. Sarma and M. H. Sarma), Adenine Press, GuilderlandGoogle Scholar
  5. Broek, D. L., Eikenberry, E. F., Rietzek, P. P. and Brodsky, B. (1981). Collagen structure in tendon and bone. In The Chemistry and Biology of Mineralized Connective Tissue (ed. A. Veis), Elsevier, New York, pp. 79–84Google Scholar
  6. Cohen-Solal, L., Lian, J. B., Kossiva, D. and Glimcher, M. J. (1979a). Identification of organic phosphorus and O-phosphothreonine in non-collageneous proteins and their absence from phosphorylated collagen. Biochem. J., 177, 81–98Google Scholar
  7. Cohen-Solal, L., Cohen-Solal, M. and Glimcher, M. J. (1979b). Identification of gamma-glutamyl phosphate in the alpha2 chains of chicken bone collagen. Proc. Natl Acad. Sci. USA, 76, 4327–30Google Scholar
  8. Cohen-Solal, L., Maroteaux, P. and Glimcher, M. J. (1981). Presence of gamma-glutamyl phosphate in the collagens of bone and other calcified tissues and its absence in the collagens of unmineralized tissues. In The Chemistry and Biology of Mineralized Connective Tissues (ed. A. Veis), Elsevier North Holland, New York, pp. 7–11Google Scholar
  9. Cowdry, E. V. (1952). Laboratory Technique in Biology and Medicine, Williams and Wilkins, BaltimoreGoogle Scholar
  10. Cusack, S. and Miller, A. (1979). Determination of the elastic constants of collagen by Brillouin light scattering. J. Molec. Biol., 135, 39–51Google Scholar
  11. Eyre, D. R., Paz, M. A. and Gallop, P. A. (1984). Cross linking in collagen and elastin. Ann. Rev. Biochem., 53, 717–48Google Scholar
  12. Flandin, F., Buffevant, C. and Herbage, D. (1984). A differential scanning calorimetry analysis of the age related changes in the thermal stability of rat skin collagen. Biochim. Biophys. Acta, 791, 205–11Google Scholar
  13. Fleisher, J. H., Spear, D., Brendel, K. and Chvapil, M. (1979). Effect of pargyline on theGoogle Scholar
  14. metabolism of BAPN by rabbits. Toxicol Appl. Pharmacol., 47, 61–9Google Scholar
  15. Folkhard, W., Knorzer, E., Mosler, E. and Nemetschek, T. (1984). Packing of collagen molecules modified with 2-propanol. J. Molec. Biol., 177, 841–4Google Scholar
  16. Glimcher, M. J. (1984). Recent studies of the mineral phase in bone and its possible linkage to the organic matrix by protein-bound phosphate bonds. Phil. Trans. R. Soc. Lond. B, 304, 479–508Google Scholar
  17. Glimcher, M. J., Friberg, U. A., Orloff, S. and Gross, J. (1966). The role of the inorganic crystals in the stability characteristics of collagen in lathyritic bone. J. Ultrastruct. Res., 15, 74–86Google Scholar
  18. Heersche, J. N. M. (1978). Mechanisms of osteoclastic bone resorption: a new hypothesis. Calcif. Tissue Res., 26, 81–4Google Scholar
  19. Herbage, D., Borsali, F., Buffevant, Ch., Flandin, F. and Aguercif, M. (1982). Composition, cross-linking and thermal stability of bone and skin collagens in patients with osteogenesis imperfecta. Metab. Bone Dis. Rel. Res., 4, 95–101Google Scholar
  20. Jelinski, L. W., Sullivan, C. E. and Torchia, D. A. (1980). 2H NMR study of molecular motion in collagen fibrils. Nature, 284, 531–4Google Scholar
  21. Lees, S. (1981). A mixed packing model for bone collagen. Calcif. Tiss. Int., 33, 591–602Google Scholar
  22. Lees, S. (1986). Water content in Type I collagen tissues calculated from the generalized packing model. Int. J. Biol. Macromol., 8, 66–72Google Scholar
  23. Lees, S. and Escoubes, M. (1987). Vapor pressure isotherms, composition and density of hyperdense bones of horse, whale and porpoise. Conn. Tiss. Res., 16, 281–303Google Scholar
  24. Lees, S., Heeley, J. D. and Cleary, P. F. (1979). A study of some properties of a sample of bovine cortical bone using ultrasound. Calcif. Tiss. Int., 29, 107–17Google Scholar
  25. Lees, S., Heeley, J. D. and Cleary, P. F. (1981). Some properties of the organic matrix of a bovine cortical bone sample in various media. Calcif. Tiss. Int., 83, 83–6Google Scholar
  26. Lees, S., Bonar, L. C. and Mook, H. A. (1984). A study of dense mineralized tissue by neutron diffraction. Int. J. Biol. Macromol., 6, 321–6Google Scholar
  27. Lees, S., Barnard, S. M. and Churchill, D. (1987a). The variation of sonic plesiovelocity in dose-dependent lathyritic rabbit femurs. Ultrasound Med. Biol., 13, 19–24Google Scholar
  28. Lees, S., Barnard, S. M. and Mook, H. A. (1987b). Neutron studies of collagen in lathyritic bone. Int. J. Biol. Macromol., 9, 32–8Google Scholar
  29. Lees, S., Eyre, D. R. and Barnard, S. M. (1989). BAPN dose dependence of mature crosslinks in bone matrix collagen of rabbit compact bone: corresponding variation of several physical properties. To be publishedGoogle Scholar
  30. Manning, G. S. (1979). Counterion binding in polyelectrolyte theory. Acc. Chem. Res., 12, 443–9Google Scholar
  31. Miller, E. J. (1984). Chemistry of the Collagens. In Extracellular Matrix Biochemistry (eds K. A. Piez and A. H. Reddi), Elsevier, New York, p. 57Google Scholar
  32. Monk, C. B. (1961). Electrolytic Dissociation. Academic Press, London, p. 261Google Scholar
  33. Nemetschek, T., Jelenik, K., Knorzer, E., Mosler, E., Nemetschek-Gansler, H., Riedl, H. and Schilling, V. (1983a). Transformation of the structure of collagen. J. Molec. Biol., 167, 461–79Google Scholar
  34. Nemetschek, T., Knorzer, E., Folkhard, W., Gerken, W., Jelenik, K., Kuhleman, C., Mosler, E. and Nemetschek-Gansler, H. (1983b). Hydratwasseraustausch und alkanol-induzierte molekulare unordnungen an kollagen. Z. Naturforsch., 38c, 815–28Google Scholar
  35. Piez, K. A. (1984). Molecular and aggregate structures of the collagens. In Extracellular Matrix Biochemistry (eds K. A. Piez and A. H. Reddi), Elsevier, New YorkGoogle Scholar
  36. Pineri, M. H., Escoubes, M. and Roche, G. (1978). Water-collagen interactions: calorimetric and mechanical experiments. Biopolymers, 17, 2799–815Google Scholar
  37. Privalov, P. L. (1982). Stability of proteins: proteins which do not present a single cooperative system. In Advances in Protein Chemistry (eds C. B. Anfinsen, J. T. Edsall and F. M. Richards), Academic Press, New York, pp. 1–104Google Scholar
  38. Privalov, P. L. and Tiktopulo, E. I. (1970). Thermal conformational transformation of tropocollagen. I. Calorometric study. Biopolymers, 9, 127–39Google Scholar
  39. Ramachandran, G. N. and Ramakrishnan, C. (1976). Molecular structure. In Biochemistry of Collagen (eds G. N. Ramachandran and A. H. Reddi), Plenum Press, New York, pp. 45–84Google Scholar
  40. Rougvie, M. A. and Bear, R. S. (1953). An X-ray diffraction investigation of swelling by collagen. J. Am. Leather Chem. Assoc, 48, 735–51Google Scholar
  41. Reiser, K. M. and Last, J. A. (1986). Biosynthesis of collagen crosslinks: in vivo labelling of neonatal skin, tendon and bone in rats. Conn. Tiss. Res., 14, 293–306Google Scholar
  42. Sarker, S. K., Sullivan, E. S. and Torchia, D. A. (1983). Solid state 13CNMR study of collagen molecular dynamics in hard and soft tissues. J. Biol. Chem., 258, 9762–7Google Scholar
  43. Sarker, S. K., Sullivan, E. S. and Torchia, D. A. (1985). Nanosecond fluctuations of the molecular backbone of collagen in hard and soft tissues: a carbon-13 NMR relaxation study. Biochem., 24, 2348–54Google Scholar
  44. Soumpasis, D. M. (1984). Statistical mechanics of the B-Z transition of DNA: contribution of diffuse ion interactions. Proc. Natl. Acad. Sci. USA, 81, 5116–20Google Scholar
  45. Soumpasis, D. M. (1986). Ionic stabilization and modulation of nucleic acid conformations in solution. In Biomolecular Stereodynamics, Vol. IV (eds R. H. Sarma and M. H. Sarma), Adenine Press, GuilderlandGoogle Scholar
  46. Soumpasis, D. M., Robert-Nicoud, M. and Jovin, T. M. (1987). B-Z DNA conformational transition in 1:1 electrolytes: dependence upon counterion size. FEBS Lett., 213, 341–4Google Scholar
  47. Spengler, D. M., Baylink, D. J. and Rosenquist, J. B. (1977). Whole bone mechanical properties: evidence for an effect of bone matrix. J. Bone Joint Surg., 59A, 670Google Scholar
  48. Tang, S. S., Trackman, P. C. and Kagan, H. M. (1983). Reaction of aortic lysyl oxidase with beta-aminopropionitrile. J. Biol. Chem., 258, 4331–38Google Scholar
  49. Veis, A. (1984). Bones and teeth. In Extracellular Matrix Biochemistry (eds K. A. Piez and A. H. Reddi), Elsevier, New York, pp. 352Google Scholar
  50. Wooley, D. E. (1984). Mammalian collagenases. In Extracellular Matrix Biochemistry (eds K. A. Piez and A. H. Reddi), Elsevier, New YorkGoogle Scholar

Copyright information

© The contributors 1989

Authors and Affiliations

  • Sidney Lees

There are no affiliations available

Personalised recommendations