Sonic velocity and the ultrastructure of mineralised tissues

  • Sidney Lees
Part of the Topics in Molecular and Structural Biology book series (TMSB)


Bone and other normally mineralised tissues may be regarded as mineral-filled soft tissue (Currey, 1964, 1969a, b; Katz, 1971), resembling mineral-filled plastics. Chemical demineralisation leaves a rubbery material with the same shape and volume as the original mineralised tissue. Most remarkably, the mineralised substance can sustain a compressive load while the demineralised matrix cannot. The skeleton is characterised by its capability to support compressive loads, whereas similar connective tissues like tendons and ligaments are strong only in tension.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, A. and Cook, K. V. (1975). Ultrasonic parameters of freshly frozen dog tibia. J. Acous. Soc. Am., 58, 1107–8Google Scholar
  2. Anderson, O. L. (1965). Determination and some uses of isotropic elastic constants of polycrystalline aggregates using single crystal data. In Physical Acoustics (ed. W. P. Mason), Vol. III, part B, Academic Press, New York, pp. 43–95Google Scholar
  3. Bonar, L. C., Lees, S. and Mook, H. A. (1985). Neutron diffraction studies of collagen in fully mineralized bone. J. Molec. Biol., 181, 265–70Google Scholar
  4. Brodsky, B. and Eikenberry, E. F. (1982). Characterization of fibrous forms of collagen. Methods of Enzymology, 82, 107–17Google Scholar
  5. Burhans, A. S., Pitt. C, Sellers, R. F. and Smith, S. G. (1965). High performance epoxy resin systems for fiber reinforced composites. 21st Annual Meeting of the Reinforced Plastics Division, Society of the Plastics Industry, personal communicationGoogle Scholar
  6. Chapman, J. A. (1984). Molecular organization in the collagen fibril. In Connective Tissue Matrix (ed. D. W. L. Hukins), Macmillan, London and BasingstokeGoogle Scholar
  7. Currey, J. D. (1964). Three analogies to explain the mechanical properties of bone. Biorheol., 2, 1–10Google Scholar
  8. Currey, J. D. (1969a). The mechanical consequences of variation in the mineral content of bone. J. Biomech., 2, 1–11Google Scholar
  9. Currey, J. D. (1969b). The relationship between the stiffness and the mineral content of bone. J. Biomech., 2, 477–80Google Scholar
  10. Cusack, S. and Miller, A. (1979). Determination of the elastic constants of collagen by Brillouin light scattering. J. Molec. Biol, 135, 285–7Google Scholar
  11. Eanes, E. D., Lundy, D. R. and Martin, G. N. (1970). X-ray diffraction study of the mineralization of turkey leg tendon. Calcif Tiss. Res., 6, 239–48Google Scholar
  12. Eanes, E. D., Martin, G. N. and Lundy, D. P. (1976). The distribution of water in calcified turkey leg tendon. Calcif. Tiss. Res., 20, 313–16Google Scholar
  13. Eyre, D. R., Paz, M. A. and Gallop, P. M. (1984). Cross-linking in collagen and elastin. Ann. Rev. Biochem., 53, 717–48Google Scholar
  14. Fedorov, F. I. (1968). Theory of Elastic Waves in Crystals. Plenum Press, New YorkGoogle Scholar
  15. Garcia, B. J., McNeill, K. G. and Cobbold, R. S. C. (1978). Propagation of ultrasound in bone: longitudinal and shear wave reflection and transmission coefficients. Third International Symposium on Ultrasonic Imaging and Tissue Characterization, National Bureau of Standards, GaithersburgGoogle Scholar
  16. Gilmore, R. S. and Katz, J. L. (1968). Elastic properties of apatites. In Proceedings of an International Symposium on Structural Properties of Hydroxyapatite and Related Compounds, National Bureau of Standards, Washington, DCGoogle Scholar
  17. Hill, R. (1952). The elastic behavior of crystalline aggregates. Proc. Phys. Soc. Lond. A, 65, 349–54Google Scholar
  18. Hulmes, D. J. S. and Miller, A. (1979). Quasi-hexagonal packing in collagen fibrils. Nature, 282, 878–80Google Scholar
  19. Katz, J. L. (1971). Hard tissue as a composite material. I. Bounds on the elastic behavior. J. Biomech., 4, 455–73Google Scholar
  20. Katz, E. P. and Li, S. T. (1973). Structure and function of bone collagen fibrils. J. Molec. Biol., 80, 1–15Google Scholar
  21. Lakes, R., Yoon, H. S. and Katz, J. L. (1986). Ultrasonic wave propagation and attenuation in wet bone. J. Biomed. Eng., 8,143-8Google Scholar
  22. Lang, S. B. (1970). Ultrasonic method for measuring elastic coefficients of bone and results on fresh and dried bovine bones. IEEE Trans. Biomed. Eng., 17, 101–5Google Scholar
  23. Lees, S. (1981). A mixed packing model for bone collagen. Calcif. Tiss. Int., 33, 591–602Google Scholar
  24. Lees, S. (1986). Water content in type I collagen tissues calculated from the generalized packing model. Int. J. Biol. Macromol., 8, 66–72Google Scholar
  25. Lees, S. (1987a). Considerations regarding the structure of the mammalian mineralized osteoid from viewpoint of the generalized packing model. Conn. Tiss. Res., 16, 281–303Google Scholar
  26. Lees, S. (1987b). Possible effect between the molecular packing of collagen and the composition of bony tissues. Int. J. Biol. Macromol., 9, 321–6Google Scholar
  27. Lees, S. and Davidson, C. L. (1977a). The role of collagen in the elastic properties of calcified tissues. J. Biomech., 10, 473–486Google Scholar
  28. Lees, S. and Davidson, C. L. (1977b). Ultrasonic measurements of some mineral filled plastics. IEEE Trans. Sonics Ultrason., SU24, 222–5Google Scholar
  29. Lees, S. and Escoubes, M. (1987). Vapor pressure isotherms, composition and density of hyperdense bones of horse, whale and porpoise. Conn. Tiss. Res., 16, 305–322Google Scholar
  30. Lees, S. and Heeley, J. D. (1981). Density of a sample bovine cortical bone matrix and its solid constituents in various media. Calcif. Tiss. Int., 33, 499–504Google Scholar
  31. Lees, S., Gilmore, R. S. and Kranz, P. R. (1973). Acoustic properties of tungsten-vinyl composites. IEEE Trans. Sonics Ultrason., SU20, 1–2Google Scholar
  32. Lees, S., Cleary, P. F., Heeley, J. D. and Gariepy, E. L. (1979a). Distribution of sonic plesio-velocity in a compact bone sample. J. Acoust. Soc. Am., 66, 641–6Google Scholar
  33. Lees, S., Heeley, J. D. and Cleary, P. F. (1979b). A study of some properties of a sample of bovine cortical bone using ultrasound. Calcif Tiss. Int., 29, 107–17Google Scholar
  34. Lees, S., Heeley, J. D. and Cleary, P. F. (1981). Some properties of the organic matrix of a bovine cortical bone sample in various media. Calcif. Tiss. Int., 33, 83–6Google Scholar
  35. Lees, S., Ahern, J. M. and Leonard, M. (1983a). Parameters influencing the sonic velocity in compact calcified tissues of various species. J. Acoust. Soc. Am., 74, 28–33Google Scholar
  36. Lees, S., Heeley, J. D., Ahern, J. M. and Oravecz, M. G. (1983b). Axial phase velocity in rat tail tendon fibers at 100 MHz. IEEE Trans. Sonics Ultrason., SU30, 85–90Google Scholar
  37. Lees, S., Pineri, M. and Escoubes, M. (1984a). A generalized packing model for type I collagens. Int. J. Biol. Macromol., 6, 133–6Google Scholar
  38. Lees, S., Bonar, L. C. and Mook, H. A. (1984b). A study of dense mineralized tissue by neutron diffraction. Int. J. Biol. Macromol., 6, 321–6Google Scholar
  39. Lees, S., Barnard, S. M. and Churchill, D. (1987a). The variation of sonic plesio-velocity in dose dependent lathyritic rabbit femurs. Ultrasound Med. Biol., 13, 19–24Google Scholar
  40. Lees, S., Barnard, S. M. and Mook, H. A. (1987b). Neutron studies of collagen in lathyritic bone. Int. J. Biol. Macromol., 9, 32–8Google Scholar
  41. Musgrave, M. J. P. (1970). Crystal Acoustics, Holden-Day, San FranciscoGoogle Scholar
  42. Rougvie, M. A. and Bear, R. S. (1953). An X-ray diffraction investigation of swelling by collagen. J. Am. Leather Chem. Assn, 48, 735–51Google Scholar
  43. Selvig, K. A. (1970). Periodic lattice images of hydroxyapatite crystals in human bone and dental hard tissues. Calcif. Tiss. Res., 6, 227–38Google Scholar
  44. Termine, J. D., Eanes, E. D., Greenfield, D. J., Nylen, M. U. and Harper, R. A. (1973). Hydrazine-deproteinated bone mineral. Calcif. Tiss. Res., 12, 73–90Google Scholar
  45. van Buskirk, W. C. and Ashman, R. B. (1981). The elastic moduli of bone. In Mechanical Properties of Bone (ed. S. C. Cowin), American Society of Mechanical Engineers, New York, 131–43Google Scholar
  46. Voegel, J. C. and Frank, R. M. (1977). Ultrastructural study of apatite crystal dissolution in human dentine and bone. J. Biol. Buccale, 5, 181–94Google Scholar
  47. Weiner, S. and Price, P. A. (1986a). Disaggregation of bone into crystals. Calcif. Tiss. Int., 39, 365–75Google Scholar
  48. Weiner, S. and Traub, W. (1986b). Organization of hydroxyapatite crystals within collagen fibrils. FEBS Lett., 206, 262–6Google Scholar
  49. White, S. W., Hulmes, D. J. S., Miller, A. and Timmins, P. A. (1977). Collagen-mineral axial relationship in calcified turkey leg tendon by X-ray and neutron diffraction. Nature, 266, 421–5Google Scholar
  50. Woodhead-Galloway, J. (1984). Two theories of the structure of the collagen fibril. In Connective Tissue Matrix (ed. D. W. L. Hukins), Macmillan, London and Basingstoke, 133–60Google Scholar

Copyright information

© The contributors 1989

Authors and Affiliations

  • Sidney Lees

There are no affiliations available

Personalised recommendations