Fourier transform infrared spectroscopy and characterisation of biological calcium phosphates

  • R. T. Bailey
  • C. Holt
Part of the Topics in Molecular and Structural Biology book series (TMSB)


Biological calcium phosphates are, with few exceptions, poorly or partly crystalline and impure, and sometimes comprise a mixture of phases. Each component of a complex calcified deposit may be described with reference to some highly crystalline model compound of perfect stoichiometry such as the minerals hydroxyapatite (HAP, Ca10(OH)2(PO4)6), brushite (DCPD, CaHPO4·2H2O) and monetite (DCPA, CaHPO4), or octacal-cium phosphate (OCP, Ca8H2(PO4)6· 5H2O). The fascination of biological calcium phosphates arises from the deviations from these well-defined forms resulting in unique physical and chemical properties, some of which may reflect the history of the structure. Thus, the degree of static and dynamic disorder, the nature and location of substituents in a lattice, and larger-scale morphological differences such as crystal size, interlayering with non-calcium phosphate phases and crystal orientation, have all to be described. Infrared spectroscopy can and has played a part in the characterisation of biological calcium phosphates. Fourier transform instruments can do better what was done before and make possible some new types of measurements.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, D. M. and Gardner, I. R. (1974). Single crystal vibrational spectra of apatite, vanadinite and mimetite. J. Chem. Soc. (Dalton), 1505–9Google Scholar
  2. Antoon, M. K., Koenig, J. H. and Koenig, J. L. (1977). Least-squares curve-fitting of Fourier transform infrared spectra with applications to polymer systems. Appl. Spectrosc., 31, 518–24Google Scholar
  3. Baddiel, C. B. and Berry, E. E. (1966). Spectra structure correlations in hydroxy and fluor-apatite. Spectrochim. Acta, 22, 1407–16Google Scholar
  4. Berry, E. E. and Baddiel, C. B. (1967). The infrared spectrum of dicalcium phosphate dihydrate (brushite). Spectrochim. Acta, 23A, 2089–97Google Scholar
  5. Brown, C. W., Lynch, P. F., Obremski, R. J. and Lavery, D. S. (1982). Matrix representations and criteria for selecting analytical wavelengths for multicomponent spectroscopic analysis. Anal Chem., 54, 1472–9Google Scholar
  6. Brown, J. M. and Elliot, J. J. (1985). In Chemical Biological and Industrial Applications of Infrared Spectroscopy (ed. J. R. Durig), Wiley Interscience, Chichester, 111–28Google Scholar
  7. Brown, W. E., Lehr, J. R., Smith, J. P. and Frazier, A. W. (1957). Crystallography of octacalcium phosphate. J. Amer. Chem. Soc., 79, 5318–19Google Scholar
  8. Casciani, F. and Condrate, R. A. (1979). The vibrational spectra of brushite, CaHPO4· 2H2O. Spectrosc. Lett., 12, 699–713Google Scholar
  9. Casciani, F. and Condrate, R. A. (1980). The Raman spectrum of monetite. J. Solid State Chem., 34, 385–8Google Scholar
  10. Catti, M., Feraris, G. and Filhol, A. (1977). Hydrogen bonding in the crystalline state. CaHPO4 (monetite), P1 or P1? A novel neutron diffraction study. Acta Crystallogr. Sect. B, 33, 1223–39Google Scholar
  11. Cooley, J. W. and Tukey, J. W. (1965). An algorithm for the machine calculation of complex Fourier series. Math. Comput., 19, 297–301Google Scholar
  12. Cox, A. J., Harries, J. E., Hukins, D. W. L., Kennedy, A. P. and Sutton, T. M. (1987a). Calcium phosphate in catheter encrustation. Brit. J. Urol., 59, 159–63Google Scholar
  13. Cox, A. J., Hukins, D. W. L., Davies, K. E., Irlam, J. C. and Sutton, T. M. (1987b). An automatic technique for in vitro assessment of the susceptibility of urinary catheter materials to encrustation. Eng. Med., 16, 37–41Google Scholar
  14. Doi, Y., Moriwaka, Y., Aoba, T., Takahashi, J. and Joshim, K. (1982). ESR and IR studies of carbonate containing hydroxyapatites. Calcif. Tiss. Intl., 34, 178–81Google Scholar
  15. Elliott, J. C. (1963). Interpretation of carbonate bands in infrared spectrum of dental enamel. J. Dent. Res., 42, 1018 (Abstr.)Google Scholar
  16. Forman, M. L. (1966). Fast Fourier transform technique and its application to Fourier spectroscopy. J. Opt. Soc. Amer., 56, 978–9Google Scholar
  17. Fowler, B. O., Moreno, E. C. and Brown, W. E. (1966). Infra-red spectra of hydroxyapatite, octacalcium phosphate and pyrolysed octacalcium phosphate. Arch. Oral Biol., 11, 477–92Google Scholar
  18. Greenler, R. G. (1966). Infrared study of adsorbed molecules on metal surfaces by reflection techniques. J. Chem. Phys., 44, 310–15Google Scholar
  19. Greenler, R. G. (1969). Reflection method for obtaining the infrared spectrum of a thin layer on a metal surface. J. Chem. Phys., 50, 1963–8Google Scholar
  20. Griffith, W. P. (1970). Raman studies on rock-forming minerals. Part II. Minerals containing MO3, MO4 and MO6 groups. J. Chem. Soc. A, 286–91Google Scholar
  21. Harries, J. E., Hukins, D. W. L., Holt, C. and Hasnain, S. S. (1987). Conversion of amorphous calcium phosphate into hydroxyapatite investigated by EXAFS spectroscopy. J. Cryst. Growth, 84, 563–70Google Scholar
  22. Holt, C., Davies, D. T. and Law, A. J. R. (1986). Effect of colloidal calcium phosphate content and free calcium ion concentration in the milk serum of the dissociation of bovine casein micelles. J. Dairy Res., 53, 557–72Google Scholar
  23. Holt, C., van Kemenade, M. J. J. M., Harries, J. E., Nelson, L. S., Bailey, R. T., Hukins, D. W. L., Hasnain, S. S. and de Bruyn P. L. (1988). Preparation of amorphous calciumGoogle Scholar
  24. magnesium phosphates at pH7 and characterization by X-ray absorption and Fourier transform infrared spectroscopy. J. Cryst. Growth, 92, 239–52Google Scholar
  25. Holt, C., van Kemenade, M. J. J. M., Nelson, L. S., Jr, Hukins, D. W. L., Bailey, R. T., Harries, J. E., Hasnain, S. S. and de Bruyn, P. L. (1989). Amorphous calcium phosphates prepared at pH 6.5 and 6.0, Mat. Res. Bull., 25, 55–62Google Scholar
  26. Ishitari, A., Ishida, H., Soeda, F. and Nagasawa, Y. (1982). Fourier transform infrared reflection spectroscopy for chemical analysis for surface analysis. Anal. Chem., 54, 682–7Google Scholar
  27. Kauppinen, J. K., Moffat, D. J., Cameron, D. G. and Mantsch, H. H. (1981a). Noise in Fourier self-deconvolution. Appl. Optics, 20, 1866–79Google Scholar
  28. Kauppinen, J. K., Moffat, D. J., Mantsch, H. H. and Cameron, D. G. (1981b). Fourier transforms in the computation of self-deconvoluted and first order derivative spectra of overlapped band contours. Anal. Chem., 53, 1454–57Google Scholar
  29. Kauppinen, J. K., Moffat, D. J., Mantsch, H. H. and Cameron, D. G. (1981c). Fourier self-deconvolution: a method for resolving intrinsically overlapping bands. Appl. Spec-trosc., 35, 271–6Google Scholar
  30. Van Kemenade, M. J. J. M. (1988). Influence of casein on precipitation of calcium phosphates. Thesis, University of Utrecht, 54–75Google Scholar
  31. Kravitz, L. C, Kingsley, J. D. and Elkin, E. L. (1968). Raman and infrared studies of coupled phosphate vibrations. J. Chem. Phys., 49, 4600–10Google Scholar
  32. LeGeros, R. Z. (1965). Effect of carbonate on the lattice parameters of apatite. Nature (Lond.), 206, 403–4Google Scholar
  33. Petrov, I. Soptrajanov, B., Fuson, N. and Lawson, J. R. (1967). Infrared investigation of dicalcium phosphates. Spectrochim. Acta, 23A, 2637–46Google Scholar

Copyright information

© The contributors 1989

Authors and Affiliations

  • R. T. Bailey
  • C. Holt

There are no affiliations available

Personalised recommendations