Advertisement

X-ray absorption spectroscopy of mineral deposits

  • D. W. L. Hukins
  • S. S. Hasnain
  • J. E. Harries
Chapter
Part of the Topics in Molecular and Structural Biology book series (TMSB)

Abstract

X-ray absorption spectroscopy (XAS) can be used to investigate the environment of atoms or ions of selected elements in solids, which need not be crystalline, or liquids. In practice, some elements are more easy to investigate than others — for reasons which will be explained when the principles of the technique are discussed below. As a result, calcium environments in biological calcium phosphates have been extensively studied and some preliminary experiments on phosphorus environments have been performed. XAS requires a continuously tunable source of X-rays. The difficulty of obtaining sufficient intensity, over a range of wavelengths, from conventional X-ray sources was one important reason why the technique was not widely used until the availability of synchrotron radiation. Synchrotron radiation is produced by accelerators, called synchrotrons and storage rings, in which electrons or positrons move in a circular path with a typical diameter of 30 m (Catlow and Greaves, 1986). There are less than a dozen laboratories in the world with the facilities for XAS using synchrotron radiation, and, indeed, all the results described in this chapter have been obtained at three of them: LURE at Orsay (France), the Stanford Synchrotron Radiation Laboratory (USA) and the SERC Daresbury Laboratory (UK).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashley, C. A. and Doniarch, S. (1975). Theory of extended X-ray absorption fine structure (EXAFS) in crystalline solids. Phys. Rev., Bll, 1279–88Google Scholar
  2. Bearden, J. A. (1974). In International Tables for X-Ray Crystallography (eds J. A. Ibers and W. C. Hamilton), Vol. 4, Kynoch Press, Birmingham, pp. 5–43Google Scholar
  3. Binsted, N., Hasnain, S. S. and Hukins, D. W. L. (1982). Developmental changes in bone mineral structure demonstrated by extended X-ray absorption fine structure (EXAFS) spectroscopy. Biochem. Biophys. Res. Commun., 107, 89–92Google Scholar
  4. Bordas, J. (1982). In Uses of Synchrotron Radiation in Biology (ed. H. B. Stuhrmann), Academic Press, New York, pp. 107–14Google Scholar
  5. Boskey, A. L. (1981). Current concepts of the physiology and biochemistry of calcification. Clin. Orthop. Rel. Res. 157, 225–57Google Scholar
  6. Catlow, C. R. A. and Greaves, G. N. (1986). Synchrotron radiation — characteristics and techniques. Chemy. Brit., 22, 805–11Google Scholar
  7. Cox, A. J., Harries, J. E., Hukins, D. W. L., Kennedy, A. P. and Sutton, T. M. (1987a).Google Scholar
  8. Calcium phosphate in catheter encrustation. Brit. J. Urol., 59,159-63Google Scholar
  9. Cox, A. J., Hukins, D. W. L., Davies, K. E., Irlam, J. C. and Sutton, T. M. (1987b). An automated technique for in vitro assessment of the susceptibility of urinary catheter materials to encrustation. Eng. Med., 16, 37–41Google Scholar
  10. Curry, N. A. and Jones, D. W. (1971). Crystal structure of brushite, calcium hydrogen orthophosphate dihydrate: a neutron-diffraction investigation. J. Chem. Soc. A., 3725–9Google Scholar
  11. Diakun, G. P., Greaves. G. N., Hasnain, S. S. and Quinn, P. D. (1984). X-Ray absorption spectroscopy. SERC Daresbury Laboratory, Warrington, UK, Technical Memorandum DL/SCI/TM38EGoogle Scholar
  12. Durham, P. J., Pendry, J. B. and Hodges, C. H. (1982). Calculation of X-ray absorption near edge structure, XANES. Comput. Phys. Commun., 25, 193–205Google Scholar
  13. Eanes, E. D., Costa, J. L., MacKenzie, A. and Warburton, W. K. (1980). Technique for the preparation of solid specimens for X-ray absorption studies. Rev. Sci. Inst., 51, 1579–80Google Scholar
  14. Eanes, E. D., Powers, L. and Costa, J. C. (1981). Extended X-ray absorption fine structure (EXAFS) studies on calcium in crystalline and amorphous solids of biological interest. Cell Calcium, 251-62Google Scholar
  15. Eisenberger, P. and Kincaid, B. M. (1978) EXAFS: new horizons in structure determinations, Science, 200,1441-7Google Scholar
  16. Elliot, J. S., Quaide, W. L., Sharp, R. F. and Lewis, L. (1958). Mineralogical studies of urine: the relationship of apatite, brushite and struvite to urinary pH. J. Urol., 80, 269–71Google Scholar
  17. Greaves, G. N., Diakun, G. P., Quinn, P. D., Hart, M. and Siddons, D. P. (1983). An order-sorting monochromator for synchrotron radiation. Nucl. Instr. Methods., 208, 335–9Google Scholar
  18. Greaves, G. N., Simkiss, K., Taylor, M. and Binsted, N. (1984). The local environment of metal sites in intracellular granules investigated by using X-ray absorption spectroscopy. Biochem J., 221, 855–68Google Scholar
  19. Gurman, S. J. (1980). Notes on the EXAFS programs at the Daresbury Laboratory. SERC Daresbury Laboratory, Warrington, UK, Technical Memorandum DL/SCI/TM21TGoogle Scholar
  20. Gurman, S. J. (1982). EXAFS studies in materials science. J. Mater. Sci., 17, 1541–70Google Scholar
  21. Gurman, S. J. and Pendry J. B. (1976). Extraction of crystal parameters from EXAFS spectra. Solid State Commun., 20 , 287–90Google Scholar
  22. Gurman, S. J., Binsted, N. and Ross, I. (1984). A rapid, exact curved-wave theory for EXAFS calculations. J. Phys. C: Solid State Phys., 17, 143–51Google Scholar
  23. Gurman, S. J., Binsted, N., and Ross, I. (1986). A rapid, exact, curved-wave theory for EXAFS calculations. II. The multiple scattering contributions. J. Phys. C: Solid State Phys., 19,1845-61Google Scholar
  24. Harries, J. E., Shah, J. S., and Hasnain, S. S. (1984). Structural study of arthropathic deposits. Springer Proc. Phys., 2, 142–4Google Scholar
  25. Harries, J. E., Hukins, D. W. L. and Hasnain S. S. (1986a). Analysis of the EXAFS spectrum of hydroxyapatite. J. Phys. C: Solid State Phys., 19, 6859–72Google Scholar
  26. Harries, J. E., Hukins, D. W. L. and Hasnain, S. S. (1986b). Multiple scattering in the EXAFS of calcium phosphates. J. Physique, 47, C8.603-6Google Scholar
  27. Harries, J. E., Hukins, D. W. L., Holt, C. and Hasnain, S. S. (1987a). Conversion of amorphous calcium phosphate into hydroxyapatite investigated by EXAFS spectroscopy. J. Crystal Growth, 84, 563–70Google Scholar
  28. Harries, J. E., Hasnain, S. S. and Shah, J. S. (1987b). EXAFS study of structural disorder in carbonate-containing apatites. Calcif. Tiss. Intl., 41, 346–50Google Scholar
  29. Harries, J. E., Irlam, J. C, Holt, C, Hasnain, S. S. and Hukins, D. W. L. (1987c). Analysis of EXAFS spectra from the brushite and monetite forms of calcium phosphate. Mater. Res. Bull., 22,1151-7 Harries, J. E., Hukins, D. W. L. and Hasnain, S. S. (1988). Calcium environment in bone mineral determined by EXAFS spectroscopy. Calcif. Tiss. Intl., 43, 250–3Google Scholar
  30. Hasnain, S. S. (1984). Environment of calcium in biological calcium phosphates. Springer Proc. Phys. 2,145-80Google Scholar
  31. Hasnain, S. S. (1987). Application of EXAFS and XANES to metalloproteins. Life Chemistry Reports, 4, 273–331Google Scholar
  32. Holt, C, Hasnain, S. S. and Hukins, D. W. L. (1982). Structure of bovine milk calcium phosphate determined by X-ray absorption spectroscopy. Biochim. Biophys. Acta., 719, 299–303Google Scholar
  33. Holt, C, van Kemenade, M. J. J. M., Harries, J. E., Nelson, L. S., Bailey, R. T., Hukins,Google Scholar
  34. D. W. L., Hasnain, S. S. and de Bruyn, P. L. (1988). Preparation of amorphous calcium and magnesium phosphates at pH 7 and characterisation by X-ray absorption and Fourier transform infrared spectroscopy. J. Crystal Growth., 92, 239–52Google Scholar
  35. Holt, C, van Kemenade, M. J. J. M., Nelson, L. S., Sawyer, L., Harries, J. E., Bailey, R. T. and Hukins, D. W. L. (1989a). Composition and structure of micellar calcium phosphate. J. Dairy Res., in press.Google Scholar
  36. Holt, C, van Kemenade, M. J. J. M., Nelson, L. S., Hukins, D. W. L., Harries, J. E., Bailey, R. T., Hasnain, S. S. and de Bruyn, P. L. (1989b). Preparation and properties of amorphous calcium phosphates precipitated at pH 6.5 and 6.0. Mater. Res. Bull., 23,55-62Google Scholar
  37. Hukins, D. W. L. (1981). X-Ray Diffraction by Disordered and Ordered Systems, Pergamon, OxfordGoogle Scholar
  38. Hukins, D. W. L. and Harries, J. E. (1987). Application of X-ray absorption spectroscopy to the investigation of biological calcification. In Biophysics and Synchrotron Radiation (eds A. Bianconi and A. Congiu Castellano), Springer, Berlin, pp. 238–45Google Scholar
  39. Hukins, D. W. L., Hickey, D. S. and Kennedy, A. P. (1983). Catheter encrustation by struvite. Br. J. Urol.,, 55, 250–4Google Scholar
  40. Hukins, D. W. L., Harries, J. E., Hasnain, S. S. and Holt, C. (1986a). Biological calcification: investigation by X-ray absorption spectroscopy, J. Physique, 47, C8.1185-8Google Scholar
  41. Hukins, D. W. L., Cox, A. J. and Harries, J. E. (1986b). EXAFS characterisation of poorly crystalline deposits from biological systems in the presence of highly crystalline mineral. J. Physique, 47, C8.1181-4Google Scholar
  42. Hukins, D. W. L., Harries, J. E. and Hasnain, S. S. (1986c). Extended X-ray absorption fine structure studies of calcification. Biochem. Soc. Trans., 14, 545–9Google Scholar
  43. Hukins, D. W. L., Nelson, L. S., Harries, J. E., Cox, A. J. and Holt, C. (1989). Calcium environment in encrusting deposits from urinary catheters investigated by interpretation of EXAFS spectra. J. Inorg. Biochem., in pressGoogle Scholar
  44. Irlam, J. C, Hukins, D. W. L., Holt, C. and Hasnain, S. S. (1984). Influence of phosphoproteins on calcification. Springer Proc. Phys., 2, 139–41Google Scholar
  45. Irlam, J. C, Holt, C, Hasnain, S. S. and Hukins, D. W. L. (1985). Comparison of the structure of micellar calcium phosphate in milk from six species by extended X-ray absorption fine structure spectroscopy. J. Dairy Res., 52, 267–73Google Scholar
  46. Jones, D. W. and Smith, J. A. S. (1962). The structure of brushite, CaHPO4.2H2O. J. Chem. Soc, 1414–20Google Scholar
  47. Kay, M. J., Young, R. A. and Posner, A. S. (1964). Crystal structure of hydroxyapatite. Nature Lond., 204,1050-2Google Scholar
  48. Kittel, C. (1986). Introduction to Solid State Physics, 6th edn, Wiley, New YorkGoogle Scholar
  49. Koch, B. and MacGillavry, C. M. (1968). In International Tables for X-Ray Crystallography (eds C. H. MacGillavray and G. D. Rieck), Vol. 3, Kynoch Press, Birmingham, 157–200Google Scholar
  50. Kronig, R. de L. (1931). Zur Theorie der Feinstruktur in den Röntgenabsorptionsspektren. Zeitschrift Physik, 70, 317–23Google Scholar
  51. Kronig, R. de L. (1932a). Zur Theorie der Feinstruktur in der Röntgenabsorptionsspektren. II. Zeitschrift Physik, 75,191-210Google Scholar
  52. Kronig, P. de L. (1932b). Zur theorie der Feinstruktur in den Röntgenabsortionsspektren. III. Zeitschrift Physik, 75, 468–75Google Scholar
  53. Lee, P. A. and Pendry, J. B. (1975). Theory of the extended X-ray absorption fine structure. Phys. Rev., Bll, 2795–811Google Scholar
  54. Lee, P. A., Citrin, P. H., Eisenberger, P. and Kincaid, B. M. (1981). Extended X-ray absorption fine structure — its strengths and limitations as a structural tool. Rev. Mod. Phys., 53, 769–806Google Scholar
  55. Lipson, S. G. and Lipson, H. (1966). Optical Physics, Cambridge University Press, CambridgeGoogle Scholar
  56. MacDowell, A. A., Norman, D. and West, J. B. (1986). Soft X-ray beam line for surface EXAFS studies in the energy range. 60≤hv≤ll 100 eV at the Daresbury SRS. Rev. Sci. Instrum., 57, 2667–79Google Scholar
  57. Miller, R. M, Hukins, D. W. L., Hasnain, S. S. and Lagarde, P. (1981). Extended x-ray absorption fine structure (EXAFS) studies of the calcium ion environment in bone mineral and related calcium phosphates. Biochem. Biophys. Res. Commun., 99, 102–6Google Scholar
  58. Norberg, A., Norberg, B., Lundbeck, K. and Parkhede, U. (1980). Urinary pH and the indwelling catheter. Uppsala J. Med. Sci., 85, 143–50Google Scholar

Copyright information

© The contributors 1989

Authors and Affiliations

  • D. W. L. Hukins
  • S. S. Hasnain
  • J. E. Harries

There are no affiliations available

Personalised recommendations