Scanning X-ray microradiography and microtomography of calcified tissues

  • J. C. Elliott
  • P. Anderson
  • R. Boakes
  • S. D. Dover
Part of the Topics in Molecular and Structural Biology book series (TMSB)


The rigidity of a calcified tissue derives almost entirely from its mineral content. This means that information about the mineral distribution is fundamental to the understanding of its mechanical properties. Changes in the mineral content can occur in diseases such as osteoporosis, a common condition of postmenopausal women where mineral loss from bones predisposes them to fracture. The changes that can occur in this and other conditions of bone can be due to volume changes in the amount of mineralised tissue and/or changes in the degree of mineralisation of that tissue. Thus changes in gross mineral density alone give a very incomplete picture. What is required is the complete three-dimensional distribution at a microscopic level.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agna, J. W., Knowles, H. C. and Alverson, G. (1958). The mineral content of normal human bone. J. Clin. Invest., 37,1357-61Google Scholar
  2. Angmar, B., Carlstrdm, D. and Glas, J. E. (1963). The mineralization of normal human enamel. J. Ultrastruct. Res., 8,12-23Google Scholar
  3. Arndt, U. W. (1986). X-ray position-sensitive detectors. J. Appl. Crystallogr., 19, 145–63Google Scholar
  4. Barrows, R. S. and Wolfe, R. N. (1971). A review of adjacency effects in silver photographic images. Photogr. Sci. Eng., 15, 472–9Google Scholar
  5. Boettinger, W. J., Burdette, H. E. and Kuriyama, M. (1979). X-ray magnifier. Rev. Sci Instrum., 50, 26–30Google Scholar
  6. Boivin, G. and Baud, C. A. (1984). Microradiographic methods for calcified tissues. Methods of Calcified Tissue Preparation (ed. G. R. Dickson), Elsevier, Amsterdam, pp. 391–412Google Scholar
  7. Bowen, D. K., Elliott, J. C, Stock, S. R. and Dover, S. D. (1986). X-ray microtomography with synchrotron radiation. SPIE Proc., 691, 94–8Google Scholar
  8. Boyde, A. and Jones, S. J. (1983). Backscattered electron imaging of dental tissues. Anat. Embryol., 168, 211–26Google Scholar
  9. Cheng, P. and Jan, G. (1987). X-ray Microscopy, Instrumentation and Biological Applications, Springer, New YorkGoogle Scholar
  10. Cosslett, V. E. and Nixon, W. C. (1960). X-ray Microscopy, Cambridge University Press, CambridgeGoogle Scholar
  11. de Josselin de Jong, E. and ten Bosch, J. J. (1985). Measurement and optimization of the MTF’s of the microradiographic method and its subsystems. SPIE Proc., 492, 486–92Google Scholar
  12. de Josselin de Jong, E., ten Bosch, J. J. and Noordmans, J. (1987a). Optimised microcomputer-guided quantitative microradiography on dental mineralised tissue slices. Phys. Med. Biol., 32, 887–99Google Scholar
  13. de Josselin de Jong, E., van der Linden, A. H. I. M. and ten Bosch, J. J. (1987b).Google Scholar
  14. Longitudinal microradiography: a non-destructive automated quantitative method to follow changes in mineralised tissue slices. Phys. Med. Biol., 32,1209-20Google Scholar
  15. Dover, S. D., Elliott, J. C, Boakes, R. and Bowen, D. K. (1989). Three-dimensional X-ray microscopy with accurate registrations of tomographic sections. J. Microsc. 153,187-91Google Scholar
  16. Elliott, J. C. and Dover, S. D. (1984). Three-dimensional distribution of mineral in bone at a resolution of 15 βm determined by x-ray microtomography. Metab. Bone Dis. Rel. Res., 5, 219–21Google Scholar
  17. Elliott, J. C. and Dover, S. D. (1985). X-ray microscopy using computerized axial tomography. J. Microsc., 138, 329–31Google Scholar
  18. Elliott, J. C, Boakes, R., Dover, S. D. and Bowen, D. K. (1988). Biological applications of microtomography. In X-ray Microscopy II (eds D. Sayre, M. Howells, J. Kirz and H. Rar-back), Springer, Berlin, pp. 349–55Google Scholar
  19. Elliott, J. C, Bowen, D. K., and Dover, S. D. and Davies, S. T. (1987). X-ray microtomography of biological tissues using laboratory and synchrotron sources. Biol. Trace Elem. Res., 13, 219–27Google Scholar
  20. Elliott, J. C, Dowker, S. E. P. and Knight, R. D. (1981). Scanning microradiography of a section of a carious lesion in dental enamel. J. Microsc., 123, 89–92Google Scholar
  21. Ely, R. V. (1980). Microfocal Radiography, Academic Press, LondonGoogle Scholar
  22. Flannery, B. P., Deckman, H. W., Roberge, W. G. and D’Amico, K. L. (1987). Three-dimensional X-ray microtomography. Science, 237,1439-44Google Scholar
  23. Grynpas, M. D., Patterson-Allen, P. and Simons, D. J. (1986). The changes in quality of mandibular bone mineral in otherwise totally immobilized Rhesus monkeys. Calcif. Tiss. Int., 39, 57–62Google Scholar
  24. Herman, G. T. (1980). Image Reconstruction from Projections: the Fundamentals of Computerized Tomography, Academic Press, New YorkGoogle Scholar
  25. Hobdell, M. H. and Braden, M. (1971). An investigation into some diffraction effects observed in microradiographic images of bone sections. Calcif Tiss. Res., 7,1-11Google Scholar
  26. Kenney, J. M., Jacobsen, C, Kirz, J. and Rarback, H. (1985). Absorption microanalysis with a scanning soft X-ray microscope: mapping the distribution of calcium in bone. J. Microscop., 138, 321–8Google Scholar
  27. Knoll, G. L. (1979). Radiation Detection and Measurement, John Wiley, New York Koch, B. and MacGillavry, C. H. (1962). X-ray absorption. In International Tables for X-ray Crystallography, Vol. 3, International Union of Crystallography, Birmingham, pp. 157–61Google Scholar
  28. Langdon, D. J., Elliott, J. C. and Fearnhead, R. W. (1980). Microradiographic observation of acidic subsurface decalcification in synthetic apatite aggregates. Caries Res., 14, 359–66Google Scholar
  29. McMaster, W. H., Kerr del Grande, N., Mallett, J. H. and Hubbell, J. H. (1969). Compilation of X-ray Cross Sections, Report UCRL-50174, Sec. II, Rev. 1, Lawrence Radiation Laboratory, University of California, LivermoreGoogle Scholar
  30. Nikiforuk, G. (1985). Understanding Dental Caries, Vol. 1, Karger, Basel Rose, K. M. and Jeffery, J. W. (1964). Errors arising from the photographic recording of X-ray intensities. Acta Crystallogr., 17, 21–4Google Scholar
  31. Schmahl, G. and Rudolph, D. (eds) (1984). X-ray Microscopy, Springer, BerlinGoogle Scholar
  32. Smales, F. C. (1975). Pyknometric density determinations on finely-divided calcium phosphates. In Physico-chimie et Cristallographie des Apatites d’Interet Biologique, ColloquesGoogle Scholar
  33. Intern. CNRS, No. 230, Paris, pp. 131–3Google Scholar
  34. Takagi, S., Chow, L. C, Brown, W. E., Dobbyn, R. C. and Kuriyama, M. (1984). Parallel beam microradiography of dental hard tissue using synchrotron radiation and X-ray image magnification. Nucl. Instr. Meth.,222, 256–8Google Scholar
  35. Weidmann, S. M., Weatherell, J. A. and Hamm, S. M. (1967). Variations of enamel density in sections of human teeth. Arch. Oral Biol., 12, 85–97Google Scholar
  36. Wilson, P. R. and Beynon, A. D. (1989). Mineralization differences between human deciduous and permanent enamel measured by quantitative microradiography. Archs. Oral Biol., 34, 85–8Google Scholar

Copyright information

© The contributors 1989

Authors and Affiliations

  • J. C. Elliott
  • P. Anderson
  • R. Boakes
  • S. D. Dover

There are no affiliations available

Personalised recommendations