Skip to main content

Scanning X-ray microradiography and microtomography of calcified tissues

  • Chapter
Calcified Tissue

Part of the book series: Topics in Molecular and Structural Biology ((TMSB))

  • 36 Accesses

Abstract

The rigidity of a calcified tissue derives almost entirely from its mineral content. This means that information about the mineral distribution is fundamental to the understanding of its mechanical properties. Changes in the mineral content can occur in diseases such as osteoporosis, a common condition of postmenopausal women where mineral loss from bones predisposes them to fracture. The changes that can occur in this and other conditions of bone can be due to volume changes in the amount of mineralised tissue and/or changes in the degree of mineralisation of that tissue. Thus changes in gross mineral density alone give a very incomplete picture. What is required is the complete three-dimensional distribution at a microscopic level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agna, J. W., Knowles, H. C. and Alverson, G. (1958). The mineral content of normal human bone. J. Clin. Invest., 37,1357-61

    Google Scholar 

  • Angmar, B., Carlstrdm, D. and Glas, J. E. (1963). The mineralization of normal human enamel. J. Ultrastruct. Res., 8,12-23

    Google Scholar 

  • Arndt, U. W. (1986). X-ray position-sensitive detectors. J. Appl. Crystallogr., 19, 145–63

    Google Scholar 

  • Barrows, R. S. and Wolfe, R. N. (1971). A review of adjacency effects in silver photographic images. Photogr. Sci. Eng., 15, 472–9

    Google Scholar 

  • Boettinger, W. J., Burdette, H. E. and Kuriyama, M. (1979). X-ray magnifier. Rev. Sci Instrum., 50, 26–30

    Google Scholar 

  • Boivin, G. and Baud, C. A. (1984). Microradiographic methods for calcified tissues. Methods of Calcified Tissue Preparation (ed. G. R. Dickson), Elsevier, Amsterdam, pp. 391–412

    Google Scholar 

  • Bowen, D. K., Elliott, J. C, Stock, S. R. and Dover, S. D. (1986). X-ray microtomography with synchrotron radiation. SPIE Proc., 691, 94–8

    Google Scholar 

  • Boyde, A. and Jones, S. J. (1983). Backscattered electron imaging of dental tissues. Anat. Embryol., 168, 211–26

    Google Scholar 

  • Cheng, P. and Jan, G. (1987). X-ray Microscopy, Instrumentation and Biological Applications, Springer, New York

    Google Scholar 

  • Cosslett, V. E. and Nixon, W. C. (1960). X-ray Microscopy, Cambridge University Press, Cambridge

    Google Scholar 

  • de Josselin de Jong, E. and ten Bosch, J. J. (1985). Measurement and optimization of the MTF’s of the microradiographic method and its subsystems. SPIE Proc., 492, 486–92

    Google Scholar 

  • de Josselin de Jong, E., ten Bosch, J. J. and Noordmans, J. (1987a). Optimised microcomputer-guided quantitative microradiography on dental mineralised tissue slices. Phys. Med. Biol., 32, 887–99

    Google Scholar 

  • de Josselin de Jong, E., van der Linden, A. H. I. M. and ten Bosch, J. J. (1987b).

    Google Scholar 

  • Longitudinal microradiography: a non-destructive automated quantitative method to follow changes in mineralised tissue slices. Phys. Med. Biol., 32,1209-20

    Google Scholar 

  • Dover, S. D., Elliott, J. C, Boakes, R. and Bowen, D. K. (1989). Three-dimensional X-ray microscopy with accurate registrations of tomographic sections. J. Microsc. 153,187-91

    Google Scholar 

  • Elliott, J. C. and Dover, S. D. (1984). Three-dimensional distribution of mineral in bone at a resolution of 15 βm determined by x-ray microtomography. Metab. Bone Dis. Rel. Res., 5, 219–21

    Google Scholar 

  • Elliott, J. C. and Dover, S. D. (1985). X-ray microscopy using computerized axial tomography. J. Microsc., 138, 329–31

    Google Scholar 

  • Elliott, J. C, Boakes, R., Dover, S. D. and Bowen, D. K. (1988). Biological applications of microtomography. In X-ray Microscopy II (eds D. Sayre, M. Howells, J. Kirz and H. Rar-back), Springer, Berlin, pp. 349–55

    Google Scholar 

  • Elliott, J. C, Bowen, D. K., and Dover, S. D. and Davies, S. T. (1987). X-ray microtomography of biological tissues using laboratory and synchrotron sources. Biol. Trace Elem. Res., 13, 219–27

    Google Scholar 

  • Elliott, J. C, Dowker, S. E. P. and Knight, R. D. (1981). Scanning microradiography of a section of a carious lesion in dental enamel. J. Microsc., 123, 89–92

    Google Scholar 

  • Ely, R. V. (1980). Microfocal Radiography, Academic Press, London

    Google Scholar 

  • Flannery, B. P., Deckman, H. W., Roberge, W. G. and D’Amico, K. L. (1987). Three-dimensional X-ray microtomography. Science, 237,1439-44

    Google Scholar 

  • Grynpas, M. D., Patterson-Allen, P. and Simons, D. J. (1986). The changes in quality of mandibular bone mineral in otherwise totally immobilized Rhesus monkeys. Calcif. Tiss. Int., 39, 57–62

    Google Scholar 

  • Herman, G. T. (1980). Image Reconstruction from Projections: the Fundamentals of Computerized Tomography, Academic Press, New York

    Google Scholar 

  • Hobdell, M. H. and Braden, M. (1971). An investigation into some diffraction effects observed in microradiographic images of bone sections. Calcif Tiss. Res., 7,1-11

    Google Scholar 

  • Kenney, J. M., Jacobsen, C, Kirz, J. and Rarback, H. (1985). Absorption microanalysis with a scanning soft X-ray microscope: mapping the distribution of calcium in bone. J. Microscop., 138, 321–8

    Google Scholar 

  • Knoll, G. L. (1979). Radiation Detection and Measurement, John Wiley, New York Koch, B. and MacGillavry, C. H. (1962). X-ray absorption. In International Tables for X-ray Crystallography, Vol. 3, International Union of Crystallography, Birmingham, pp. 157–61

    Google Scholar 

  • Langdon, D. J., Elliott, J. C. and Fearnhead, R. W. (1980). Microradiographic observation of acidic subsurface decalcification in synthetic apatite aggregates. Caries Res., 14, 359–66

    Google Scholar 

  • McMaster, W. H., Kerr del Grande, N., Mallett, J. H. and Hubbell, J. H. (1969). Compilation of X-ray Cross Sections, Report UCRL-50174, Sec. II, Rev. 1, Lawrence Radiation Laboratory, University of California, Livermore

    Google Scholar 

  • Nikiforuk, G. (1985). Understanding Dental Caries, Vol. 1, Karger, Basel Rose, K. M. and Jeffery, J. W. (1964). Errors arising from the photographic recording of X-ray intensities. Acta Crystallogr., 17, 21–4

    Google Scholar 

  • Schmahl, G. and Rudolph, D. (eds) (1984). X-ray Microscopy, Springer, Berlin

    Google Scholar 

  • Smales, F. C. (1975). Pyknometric density determinations on finely-divided calcium phosphates. In Physico-chimie et Cristallographie des Apatites d’Interet Biologique, Colloques

    Google Scholar 

  • Intern. CNRS, No. 230, Paris, pp. 131–3

    Google Scholar 

  • Takagi, S., Chow, L. C, Brown, W. E., Dobbyn, R. C. and Kuriyama, M. (1984). Parallel beam microradiography of dental hard tissue using synchrotron radiation and X-ray image magnification. Nucl. Instr. Meth.,222, 256–8

    Google Scholar 

  • Weidmann, S. M., Weatherell, J. A. and Hamm, S. M. (1967). Variations of enamel density in sections of human teeth. Arch. Oral Biol., 12, 85–97

    Google Scholar 

  • Wilson, P. R. and Beynon, A. D. (1989). Mineralization differences between human deciduous and permanent enamel measured by quantitative microradiography. Archs. Oral Biol., 34, 85–8

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1989 The contributors

About this chapter

Cite this chapter

Elliott, J.C., Anderson, P., Boakes, R., Dover, S.D. (1989). Scanning X-ray microradiography and microtomography of calcified tissues. In: Hukins, D.W.L. (eds) Calcified Tissue. Topics in Molecular and Structural Biology. Palgrave, London. https://doi.org/10.1007/978-1-349-09868-2_3

Download citation

Publish with us

Policies and ethics