Advertisement

Mineral deposits in tissues

  • D. W. L. Hukins
Chapter
Part of the Topics in Molecular and Structural Biology book series (TMSB)

Abstract

This chapter has two purposes. One is to provide background information on the minerals deposited in calcified tissues. The other is to summarise the techniques used to characterise them. An understanding of the range and scope of these techniques is essential for a critical evaluation of the material described in subsequent chapters. Furthermore, because of the complexity of many of the minerals, it is impossible to understand how their structures are defined without some appreciation of the techniques involved. Several techniques which are important subjects of current research are described in more detail in chapters devoted to them.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali, S. Y. (1985). Apatite-type crystal deposition in articular cartilage. Scanning Electron Microsc., IV, 1555–66Google Scholar
  2. Allen, R. J. L. (1940). The estimation of phosphorus. Biochem. J., 34, 858–65Google Scholar
  3. Arsenault, A. L. (1988) Crystal-collagen relationships in calcified turkey leg tendons visualized by selected-area dark field electron microscopy. Calcif. Tiss. Intl, 43, 202–12Google Scholar
  4. Bacon, G. E. (1962). Neutron Diffraction, 2nd. edn, Clarendon Press, OxfordGoogle Scholar
  5. Belton, P. S., Harris, R. K. and Wilkes, P. J. (1988). Solid-state phosphorus-31 NMR studies of synthetic inorganic calcium phosphates. J. Phys. Chem. Solids, 49, 21–7Google Scholar
  6. Bigi, A., Foresti, E., Incerti, A., Ripamonti, A. and Roveri, N. (1980). Structural and chemical characterization of the inorganic deposits in calcified human aortic wall. Inorg. Chim. Acta, 55, 81–5Google Scholar
  7. Bigi, A., Compostella, L., Fichera, A. M., Foresti, E., Gazzano, M., Ripamonti, A. and Roveri, N. (1988). Structural and chemical characterisation of inorganic deposits in calcified human mitral valve. J. Inorg. Biochem., 37, 75–82Google Scholar
  8. Blumenthal, N. C, Posner, A. S. and Holmes, J. M. (1972). Effect of preparation conditions on the properties and transformation of amorphous calcium phosphate. Mater. Res. Bull., 7, 1181–90Google Scholar
  9. Bonar, L. C, Grynpas, M. and Glimcher, M. J. (1984). Failure to detect crystalline brushite in embryonic chick and bovine bone by X-ray diffraction. J. Ultrastruct. Res., 86, 93–9Google Scholar
  10. Boskey, A. L. (1980). Current concepts of the physiology and biochemistry of calcification. Clin. Orthop., 157, 225–57Google Scholar
  11. Boyce, W. H. (1968). Organic matrix of human urinary concretions. Am. J. Med., 45, 673–83Google Scholar
  12. Brooker, B. E. (1978). The origin, structure and occurrence of corpora amylacea in the bovine mammary gland and in milk. Cell Tiss. Res., 191, 525–538Google Scholar
  13. Chandler, J. A. (1977). X-Ray Microanalysis in the Electron Microscope, North Holland, AmsterdamGoogle Scholar
  14. Christian, G. D. and Feldman, F. J. (1970). Atomic Absorption Spectroscopy -Applicationsin Agriculture, Biology and Medicine, Wiley Interscience, New YorkGoogle Scholar
  15. Cox, A. J. and Hukins, D. W. L. (1989). Morphology of mineral deposit on encrusted urinary catheters investigated by scanning electron microscopy. J. Urol., submittedGoogle Scholar
  16. Cox, A. J., Harries, J. E., Hukins, D. W. L., Kennedy, A. P. and Sutton, T. M. (1987).Google Scholar
  17. Calcium phosphate in catheter encrustation. Brit. J. Urol., 59, 159–163Google Scholar
  18. Cox, A. J., Hukins, D. W. L. and Sutton, T. M. (1989). Infection of catheterised patients: bacterial colonisation of encrusted Foley catheters shown by scanning electron microscopy. Urol. Res., submittedGoogle Scholar
  19. Cullity, B. D. (1978). Elements of X-Ray Diffraction, 2nd edn, Addison-Wesley, London Dieppe, P. and Calvert, P. (1983). Crystals and Joint Disease, Chapman & Hall, London Eanes, E. D. and Posner, A. S. (1965). Kinetics and mechanism of conversion ofnoncrystalline calcium phosphate to hydroxyapatite. Trans. NY Acad. Sci., 28, 233–41Google Scholar
  20. Eanes, E. D., Lundy, D. R. and Martin, G. N. (1970). X-Ray diffraction study of themineralisation of turkey leg tendon. Calcif. Tiss. Res., 6, 239–48Google Scholar
  21. Eanes, E. D., Powers, L. and Costa, J. L. (1981). Extended X-ray absorption fine structure (EXAFS) studies on calcium in crystalline and amorphous solids of biological interest. Cell Calcium, 2, 251–61Google Scholar
  22. Elliot, J. S., Quaide, W. L., Sharp, R. F. and Lewis, L. (1958). Mineralogical studies of urine: the relationship of apatite, brushite and struvite to urinary pH. J. Urol., 80, 269–71Google Scholar
  23. Fagan, T. J. and Lidskey, M. D. (1974). Compensated polarized light microscopy using cellophane adhesive tape. Arthr. Rheum., 17, 256–62Google Scholar
  24. Frondel, C. (1941). Whitlockite: a new calcium phosphate, Ca3(PO4)2. Amer. Mineral., 26, 145–52Google Scholar
  25. Gatter, R. A. (1974). The compensated polarized light microscope in clinical rheumatology. Arthr. Rheum., 17, 253–55Google Scholar
  26. Genant, H. K. (1976). Roentgenographic aspects of calcium pyrophosphate dihydrate crystal deposition disease (pseudogout). Arthr. Rheum., 19, 307–28Google Scholar
  27. Gibson, R. I. (1974). Descriptive human pathological mineralogy. Amer. Mineral., 59, 1177–82.Google Scholar
  28. Gurr, E. (1971). Synthetic Dyes in Biology, Medicine and Chemistry, Academic Press, London, pp. 234–5Google Scholar
  29. Harries, J. E., Dieppe, P. A., Heap, P., Gilgead, J., Mather, M. and Shah, J. S. (1983). In vitro growth of calcium pyrophosphate crystals in polyacrylamide gels. Ann. Rheum. Dis., 42 (Suppl. 1), 100–1Google Scholar
  30. Harries, J. E., Hasnain, S. S. and Shah, J. S. (1987a). EXAFS study of structural disorder in carbonate-containing hydroxyapatite. Calcif. Tiss. Intl,41, 346–50Google Scholar
  31. Harries, J. E., Hukins, D. W. L., Holt, C. and Hasnain, S. S. (1987b). Conversion of amorphous calcium phosphate into hydroxyapatite investigated by EXAFS spectroscopy. J. Cryst. Growth, 84, 563–70Google Scholar
  32. Harrison, G. A. (1957). Chemical Methods in Clinical Medicine, 4th edn, Churchill, London, pp. 107–16Google Scholar
  33. Hartshorne, N. H. and Stuart, A. (1969). Practical Optical Crystallography, 2nd edn, Edward Arnold, LondonGoogle Scholar
  34. Holt, C, Dalgleisch, D. G. and Jenness, R. (1981). Calculation of the ion equilibria in milk diffusate and comparison with experiment. Anal Biochem., 113,154-63Google Scholar
  35. Holt, C, Cox, A. J., Harries, J. E. and Hukins, D. W. L. (1987). In Recent Developments in Ion Exchange (eds P. A. Williams and M. J. Hudson), Elsevier Applied Science, Barking, 22–8Google Scholar
  36. Holt, C, van Kemenade, M. J. J. M., Harries, J. E., Nelson, L. S., Bailey, R. T., Hukins, D. W. L., Hasnain, S. S. and de Bruyn, P. L. (1988). Preparation of amorphous calcium-magnesium phosphates at pH7 and characterization by X-ray absorption and Fourier transform infrared spectroscopy. J. Cryst. Growth, 92, 239–52Google Scholar
  37. Holt, C, van Kemenade, M. J. J. M., Nelson, L. S., Hukins, D. W. L., Bailey, R. T., Harries, J. E., and Hasnain, S. S. and de Bruyn, P. L. (1989a). Amorphous calcium phosphates prepared at pH 6.5 and 6.0. Mater. Res. Bull., 23, 55–62Google Scholar
  38. Holt, C, van Kemenade, M. J. J. M., Nelson, L. S., Sawyer, L., Harries, J. E., Bailey, R. T. and Hukins, D. W. L. (1989b). Composition and structure of micellar calcium phosphate. J. Dairy Res., in pressGoogle Scholar
  39. Hukins, D.W.L.(1981). X-Ray Diffraction by Disordered and Ordered Systems, Pergamon, OxfordGoogle Scholar
  40. Hukins, D. W. L., Cox, A. J. and Harries, J. E. (1986). EXAFS characterisation of poorly crystalline deposits from biological systems in the presence of highly crystalline material. J. Physique., 47, C8.1181-84Google Scholar
  41. Kerr, P. F. (1977). Optical Mineralogy, 4th edn, McGraw-Hill, New YorkGoogle Scholar
  42. Lees, S. and Prostak, K. (1988). The locus of mineral crystallites in bone. Conn. Tiss. Res., 18, 41–54Google Scholar
  43. LeGeros, R. Z., LeGeros, J. P., Trautz, O. R. and Klein, E. (1964). Spectral properties of carbonate-containing apatites. J. Dental Res., 43, 752–60Google Scholar
  44. Levy, R. J. Schoen, F. J., Levy, J. T., Nelson, A. C, Howard, S. L. and Oshry, L. J. (1983). Biologic determinants of dystrophic calcification and osteocalcin deposition in glutaral-dehyde-preserved porcine aortic valve leaflets implanted subcutaneously in rats. Am. J. Path., 113, 143–55Google Scholar
  45. Lian, J. B., Prien, E. L., Glimcher, M. J. and Gallup, P. M. (1977). The presence of protein-bound γ-carboxyglutamic acid in calcium containing renal stones. J. Clin. Invest., 59, 1151–7Google Scholar
  46. Linder, P. W. and Little, J. C. (1986). Prediction by computer modelling of the precipitation of stone-forming solids from urine. Inorg. Chim. Acta, 123, 137–45Google Scholar
  47. Lipson, H. and Steeple, H. (1970). Interpretation of X-Ray Powder Diffraction Patterns, Macmillan, LondonGoogle Scholar
  48. Lowenstam, H. A. (1981). Minerals formed by organisms. Science, 211, 1126–31Google Scholar
  49. McCarty, D. J. (1976). Calcium pyrophosphate deposition disease. Arthr. Rheum., 19, 275–85Google Scholar
  50. Mann, S. (1983). Mineralization in biological systems. Struct. Bond., 54, 125–74Google Scholar
  51. Mann, S. (1986). The study of biominerals by high resolution transmission electron microscopy. Scanning Electron Microsc., II, 393–413Google Scholar
  52. Meyer, J. L. and Eanes, E. D. (1978). A thermodynamic analysis of the amorphous to crystalline calcium phosphate transformation. Calcif. Tiss. Res., 25, 59–68Google Scholar
  53. Miller, R. M., Hukins, D. W. L., Hasnain, S. S. and Lagarde, P. (1981). Extended X-ray absorption fine structure (EXAFS) studies of the calcium ion environment in bone mineral and related calcium phosphates. Biochem. Biophys. Res. Commun., 99, 102–6Google Scholar
  54. Nancollas, G. H. (1982). Phase transformation during precipitation of calcium salts. In Biological Mineralization and Demineralization (ed. G. H. Nancollas), Springer, Berlin, 19–99Google Scholar
  55. Okazaki, T., Saito, T., Mitomo, T. and Siota, Y. (1976). Pseudogout: clinical observations and chemical and analysis of deposits. Arthr. Rheum., 19, 293–305Google Scholar
  56. Pautard, F. G. E. and Williams, R. J. P. (1982). Biological minerals. Chemy. Brit., 18,188-93 Phelps, P., Steele, A. D. and McCarty, D. J. (1968). Compensated polarized light microscopy. Identification of crystals in synovial fluids from gout and pseudogout. JAMA, 203, 508–12Google Scholar
  57. Prien, E. L. (1963). Crystallographic analysis of urinary calculi: a 23-year survey study. J. Urol., 89, 917–24Google Scholar
  58. Prien, E. L. and Prien, E. L. (1968). Composition and structure of urinary stone. Am. J. Med., 45, 654–72Google Scholar
  59. Raisz, L. G. (1982). Mechanisms and regulation of normal and pathological demineralization. In Biological Mineralization and Demineralization (ed. G. H. Nancollas), Springer, Berlin, 287–301Google Scholar
  60. Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr.,2, 65–71Google Scholar
  61. Roomans, G. M. (1981). Quantitative electron probe microanalysis of biological bulk specimens. Scanning Electron Microsc., II, 345–56Google Scholar
  62. Schmid, K., McSharry, W. O., Pameyer, C. H. and Binette, J. P. (1980). Chemical and physicochemical studies on the mineral deposits of the human atherosclerotic aorta. Artherosclerosis, 37, 199–210Google Scholar
  63. Slavin, M. (1978). Atomic Absorption Spectroscopy, Wiley, New YorkGoogle Scholar
  64. Smith, L. H. (1982). Abnormal calcification. In Biological Mineralization and Demineralization (ed. G. H. Nancollas), Springer, Berlin, 259–70Google Scholar
  65. Sutor, D. J. (1968). Difficulties in the identification of components of mixed urinary calculi using the X-ray powder method. Brit. J. Urol., 40, 29–32Google Scholar
  66. Sutor, D. J. and Scheidt, S. E. (1968). Identification standards for human urinary components using crystallographic methods. Brit. J. Urol., 40, 22–8Google Scholar
  67. Taylor, M., Simkiss, K. and Greaves, G. N. (1986). Amorphous structure of intracellular mineral granules. Biochem. Soc. Trans., 14, 549–52Google Scholar
  68. Taylor, M. G., Simkiss, K., Greaves, G. N. and Harries, J. (1988). Corrosion of intracellular granules and cell death. Proc. R. Soc. Lond., B234, 463–76Google Scholar
  69. Termine, J. D. (1972). Mineral chemistry and skeletal biology. Clin. Orthop., 85, 207–41Google Scholar
  70. Termine, J. D. and Eanes, E. D. (1972). Comparative chemistry of amorphous and apatitic calcium phosphate preparations. Calcif. Tiss. Res., 10,171-5Google Scholar
  71. Walton, A. G., Bodin, W. J., Furedi, H. and Schwartz, A. (1967). Nucleation of calcium phosphate from solution. Can. J. Chem., 45, 2695–701Google Scholar
  72. Watt, I. (1983). Radiology of the crystal-associated arthrides. Ann. Rheum. Dis., 42 (Suppl. 1), 73–80Google Scholar
  73. Weiner, S. and Traub, W. (1986). Organization of hydroxyapatite crystals within collagen fibrils. FEBS Lett., 206, 262–6Google Scholar
  74. Wheeler, E. J. and Lewis, D. (1977). An X-ray study of the paracrystalline nature of bone apatite. Calcif. Tiss. Res., 24, 243–8Google Scholar
  75. White, S. W., Hulmes, D. J. S., Miller, A. and Timmins, P. A. (1977). Collagen-mineral axial relationship in calcified turkey leg tendon by X-ray and neutron diffraction. Nature, Lond., 266, 421–5Google Scholar
  76. Woodhead-Galloway, J., Young, W. H. and Hukins, D. W. L. (1980). Description of irregularity in biological structures. Acta Crystallogr., A36, 198–205Google Scholar
  77. Young, R. A. and Brown, W. E. (1982). Structures of biological minerals. In Biological Mineralization and Demineralization (ed. G. H. Nancollas), Springer, Berlin, 101–41Google Scholar
  78. Young, R. A., Mackie, P. E. and von Dreele, R. B. (1977). Application of the pattern-fitting structure-refinement method to X-ray powder diffraction. J. Appl. Crystallogr., 10, 262–9Google Scholar

Copyright information

© The contributors 1989

Authors and Affiliations

  • D. W. L. Hukins

There are no affiliations available

Personalised recommendations