Skip to main content

Mineral deposits in tissues

  • Chapter
Calcified Tissue

Part of the book series: Topics in Molecular and Structural Biology ((TMSB))

  • 35 Accesses

Abstract

This chapter has two purposes. One is to provide background information on the minerals deposited in calcified tissues. The other is to summarise the techniques used to characterise them. An understanding of the range and scope of these techniques is essential for a critical evaluation of the material described in subsequent chapters. Furthermore, because of the complexity of many of the minerals, it is impossible to understand how their structures are defined without some appreciation of the techniques involved. Several techniques which are important subjects of current research are described in more detail in chapters devoted to them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali, S. Y. (1985). Apatite-type crystal deposition in articular cartilage. Scanning Electron Microsc., IV, 1555–66

    Google Scholar 

  • Allen, R. J. L. (1940). The estimation of phosphorus. Biochem. J., 34, 858–65

    Google Scholar 

  • Arsenault, A. L. (1988) Crystal-collagen relationships in calcified turkey leg tendons visualized by selected-area dark field electron microscopy. Calcif. Tiss. Intl, 43, 202–12

    Google Scholar 

  • Bacon, G. E. (1962). Neutron Diffraction, 2nd. edn, Clarendon Press, Oxford

    Google Scholar 

  • Belton, P. S., Harris, R. K. and Wilkes, P. J. (1988). Solid-state phosphorus-31 NMR studies of synthetic inorganic calcium phosphates. J. Phys. Chem. Solids, 49, 21–7

    Google Scholar 

  • Bigi, A., Foresti, E., Incerti, A., Ripamonti, A. and Roveri, N. (1980). Structural and chemical characterization of the inorganic deposits in calcified human aortic wall. Inorg. Chim. Acta, 55, 81–5

    Google Scholar 

  • Bigi, A., Compostella, L., Fichera, A. M., Foresti, E., Gazzano, M., Ripamonti, A. and Roveri, N. (1988). Structural and chemical characterisation of inorganic deposits in calcified human mitral valve. J. Inorg. Biochem., 37, 75–82

    Google Scholar 

  • Blumenthal, N. C, Posner, A. S. and Holmes, J. M. (1972). Effect of preparation conditions on the properties and transformation of amorphous calcium phosphate. Mater. Res. Bull., 7, 1181–90

    Google Scholar 

  • Bonar, L. C, Grynpas, M. and Glimcher, M. J. (1984). Failure to detect crystalline brushite in embryonic chick and bovine bone by X-ray diffraction. J. Ultrastruct. Res., 86, 93–9

    Google Scholar 

  • Boskey, A. L. (1980). Current concepts of the physiology and biochemistry of calcification. Clin. Orthop., 157, 225–57

    Google Scholar 

  • Boyce, W. H. (1968). Organic matrix of human urinary concretions. Am. J. Med., 45, 673–83

    Google Scholar 

  • Brooker, B. E. (1978). The origin, structure and occurrence of corpora amylacea in the bovine mammary gland and in milk. Cell Tiss. Res., 191, 525–538

    Google Scholar 

  • Chandler, J. A. (1977). X-Ray Microanalysis in the Electron Microscope, North Holland, Amsterdam

    Google Scholar 

  • Christian, G. D. and Feldman, F. J. (1970). Atomic Absorption Spectroscopy -Applicationsin Agriculture, Biology and Medicine, Wiley Interscience, New York

    Google Scholar 

  • Cox, A. J. and Hukins, D. W. L. (1989). Morphology of mineral deposit on encrusted urinary catheters investigated by scanning electron microscopy. J. Urol., submitted

    Google Scholar 

  • Cox, A. J., Harries, J. E., Hukins, D. W. L., Kennedy, A. P. and Sutton, T. M. (1987).

    Google Scholar 

  • Calcium phosphate in catheter encrustation. Brit. J. Urol., 59, 159–163

    Google Scholar 

  • Cox, A. J., Hukins, D. W. L. and Sutton, T. M. (1989). Infection of catheterised patients: bacterial colonisation of encrusted Foley catheters shown by scanning electron microscopy. Urol. Res., submitted

    Google Scholar 

  • Cullity, B. D. (1978). Elements of X-Ray Diffraction, 2nd edn, Addison-Wesley, London Dieppe, P. and Calvert, P. (1983). Crystals and Joint Disease, Chapman & Hall, London Eanes, E. D. and Posner, A. S. (1965). Kinetics and mechanism of conversion ofnoncrystalline calcium phosphate to hydroxyapatite. Trans. NY Acad. Sci., 28, 233–41

    Google Scholar 

  • Eanes, E. D., Lundy, D. R. and Martin, G. N. (1970). X-Ray diffraction study of themineralisation of turkey leg tendon. Calcif. Tiss. Res., 6, 239–48

    Google Scholar 

  • Eanes, E. D., Powers, L. and Costa, J. L. (1981). Extended X-ray absorption fine structure (EXAFS) studies on calcium in crystalline and amorphous solids of biological interest. Cell Calcium, 2, 251–61

    Google Scholar 

  • Elliot, J. S., Quaide, W. L., Sharp, R. F. and Lewis, L. (1958). Mineralogical studies of urine: the relationship of apatite, brushite and struvite to urinary pH. J. Urol., 80, 269–71

    Google Scholar 

  • Fagan, T. J. and Lidskey, M. D. (1974). Compensated polarized light microscopy using cellophane adhesive tape. Arthr. Rheum., 17, 256–62

    Google Scholar 

  • Frondel, C. (1941). Whitlockite: a new calcium phosphate, Ca3(PO4)2. Amer. Mineral., 26, 145–52

    Google Scholar 

  • Gatter, R. A. (1974). The compensated polarized light microscope in clinical rheumatology. Arthr. Rheum., 17, 253–55

    Google Scholar 

  • Genant, H. K. (1976). Roentgenographic aspects of calcium pyrophosphate dihydrate crystal deposition disease (pseudogout). Arthr. Rheum., 19, 307–28

    Google Scholar 

  • Gibson, R. I. (1974). Descriptive human pathological mineralogy. Amer. Mineral., 59, 1177–82.

    Google Scholar 

  • Gurr, E. (1971). Synthetic Dyes in Biology, Medicine and Chemistry, Academic Press, London, pp. 234–5

    Google Scholar 

  • Harries, J. E., Dieppe, P. A., Heap, P., Gilgead, J., Mather, M. and Shah, J. S. (1983). In vitro growth of calcium pyrophosphate crystals in polyacrylamide gels. Ann. Rheum. Dis., 42 (Suppl. 1), 100–1

    Google Scholar 

  • Harries, J. E., Hasnain, S. S. and Shah, J. S. (1987a). EXAFS study of structural disorder in carbonate-containing hydroxyapatite. Calcif. Tiss. Intl,41, 346–50

    Google Scholar 

  • Harries, J. E., Hukins, D. W. L., Holt, C. and Hasnain, S. S. (1987b). Conversion of amorphous calcium phosphate into hydroxyapatite investigated by EXAFS spectroscopy. J. Cryst. Growth, 84, 563–70

    Google Scholar 

  • Harrison, G. A. (1957). Chemical Methods in Clinical Medicine, 4th edn, Churchill, London, pp. 107–16

    Google Scholar 

  • Hartshorne, N. H. and Stuart, A. (1969). Practical Optical Crystallography, 2nd edn, Edward Arnold, London

    Google Scholar 

  • Holt, C, Dalgleisch, D. G. and Jenness, R. (1981). Calculation of the ion equilibria in milk diffusate and comparison with experiment. Anal Biochem., 113,154-63

    Google Scholar 

  • Holt, C, Cox, A. J., Harries, J. E. and Hukins, D. W. L. (1987). In Recent Developments in Ion Exchange (eds P. A. Williams and M. J. Hudson), Elsevier Applied Science, Barking, 22–8

    Google Scholar 

  • Holt, C, van Kemenade, M. J. J. M., Harries, J. E., Nelson, L. S., Bailey, R. T., Hukins, D. W. L., Hasnain, S. S. and de Bruyn, P. L. (1988). Preparation of amorphous calcium-magnesium phosphates at pH7 and characterization by X-ray absorption and Fourier transform infrared spectroscopy. J. Cryst. Growth, 92, 239–52

    Google Scholar 

  • Holt, C, van Kemenade, M. J. J. M., Nelson, L. S., Hukins, D. W. L., Bailey, R. T., Harries, J. E., and Hasnain, S. S. and de Bruyn, P. L. (1989a). Amorphous calcium phosphates prepared at pH 6.5 and 6.0. Mater. Res. Bull., 23, 55–62

    Google Scholar 

  • Holt, C, van Kemenade, M. J. J. M., Nelson, L. S., Sawyer, L., Harries, J. E., Bailey, R. T. and Hukins, D. W. L. (1989b). Composition and structure of micellar calcium phosphate. J. Dairy Res., in press

    Google Scholar 

  • Hukins, D.W.L.(1981). X-Ray Diffraction by Disordered and Ordered Systems, Pergamon, Oxford

    Google Scholar 

  • Hukins, D. W. L., Cox, A. J. and Harries, J. E. (1986). EXAFS characterisation of poorly crystalline deposits from biological systems in the presence of highly crystalline material. J. Physique., 47, C8.1181-84

    Google Scholar 

  • Kerr, P. F. (1977). Optical Mineralogy, 4th edn, McGraw-Hill, New York

    Google Scholar 

  • Lees, S. and Prostak, K. (1988). The locus of mineral crystallites in bone. Conn. Tiss. Res., 18, 41–54

    Google Scholar 

  • LeGeros, R. Z., LeGeros, J. P., Trautz, O. R. and Klein, E. (1964). Spectral properties of carbonate-containing apatites. J. Dental Res., 43, 752–60

    Google Scholar 

  • Levy, R. J. Schoen, F. J., Levy, J. T., Nelson, A. C, Howard, S. L. and Oshry, L. J. (1983). Biologic determinants of dystrophic calcification and osteocalcin deposition in glutaral-dehyde-preserved porcine aortic valve leaflets implanted subcutaneously in rats. Am. J. Path., 113, 143–55

    Google Scholar 

  • Lian, J. B., Prien, E. L., Glimcher, M. J. and Gallup, P. M. (1977). The presence of protein-bound γ-carboxyglutamic acid in calcium containing renal stones. J. Clin. Invest., 59, 1151–7

    Google Scholar 

  • Linder, P. W. and Little, J. C. (1986). Prediction by computer modelling of the precipitation of stone-forming solids from urine. Inorg. Chim. Acta, 123, 137–45

    Google Scholar 

  • Lipson, H. and Steeple, H. (1970). Interpretation of X-Ray Powder Diffraction Patterns, Macmillan, London

    Google Scholar 

  • Lowenstam, H. A. (1981). Minerals formed by organisms. Science, 211, 1126–31

    Google Scholar 

  • McCarty, D. J. (1976). Calcium pyrophosphate deposition disease. Arthr. Rheum., 19, 275–85

    Google Scholar 

  • Mann, S. (1983). Mineralization in biological systems. Struct. Bond., 54, 125–74

    Google Scholar 

  • Mann, S. (1986). The study of biominerals by high resolution transmission electron microscopy. Scanning Electron Microsc., II, 393–413

    Google Scholar 

  • Meyer, J. L. and Eanes, E. D. (1978). A thermodynamic analysis of the amorphous to crystalline calcium phosphate transformation. Calcif. Tiss. Res., 25, 59–68

    Google Scholar 

  • Miller, R. M., Hukins, D. W. L., Hasnain, S. S. and Lagarde, P. (1981). Extended X-ray absorption fine structure (EXAFS) studies of the calcium ion environment in bone mineral and related calcium phosphates. Biochem. Biophys. Res. Commun., 99, 102–6

    Google Scholar 

  • Nancollas, G. H. (1982). Phase transformation during precipitation of calcium salts. In Biological Mineralization and Demineralization (ed. G. H. Nancollas), Springer, Berlin, 19–99

    Google Scholar 

  • Okazaki, T., Saito, T., Mitomo, T. and Siota, Y. (1976). Pseudogout: clinical observations and chemical and analysis of deposits. Arthr. Rheum., 19, 293–305

    Google Scholar 

  • Pautard, F. G. E. and Williams, R. J. P. (1982). Biological minerals. Chemy. Brit., 18,188-93 Phelps, P., Steele, A. D. and McCarty, D. J. (1968). Compensated polarized light microscopy. Identification of crystals in synovial fluids from gout and pseudogout. JAMA, 203, 508–12

    Google Scholar 

  • Prien, E. L. (1963). Crystallographic analysis of urinary calculi: a 23-year survey study. J. Urol., 89, 917–24

    Google Scholar 

  • Prien, E. L. and Prien, E. L. (1968). Composition and structure of urinary stone. Am. J. Med., 45, 654–72

    Google Scholar 

  • Raisz, L. G. (1982). Mechanisms and regulation of normal and pathological demineralization. In Biological Mineralization and Demineralization (ed. G. H. Nancollas), Springer, Berlin, 287–301

    Google Scholar 

  • Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr.,2, 65–71

    Google Scholar 

  • Roomans, G. M. (1981). Quantitative electron probe microanalysis of biological bulk specimens. Scanning Electron Microsc., II, 345–56

    Google Scholar 

  • Schmid, K., McSharry, W. O., Pameyer, C. H. and Binette, J. P. (1980). Chemical and physicochemical studies on the mineral deposits of the human atherosclerotic aorta. Artherosclerosis, 37, 199–210

    Google Scholar 

  • Slavin, M. (1978). Atomic Absorption Spectroscopy, Wiley, New York

    Google Scholar 

  • Smith, L. H. (1982). Abnormal calcification. In Biological Mineralization and Demineralization (ed. G. H. Nancollas), Springer, Berlin, 259–70

    Google Scholar 

  • Sutor, D. J. (1968). Difficulties in the identification of components of mixed urinary calculi using the X-ray powder method. Brit. J. Urol., 40, 29–32

    Google Scholar 

  • Sutor, D. J. and Scheidt, S. E. (1968). Identification standards for human urinary components using crystallographic methods. Brit. J. Urol., 40, 22–8

    Google Scholar 

  • Taylor, M., Simkiss, K. and Greaves, G. N. (1986). Amorphous structure of intracellular mineral granules. Biochem. Soc. Trans., 14, 549–52

    Google Scholar 

  • Taylor, M. G., Simkiss, K., Greaves, G. N. and Harries, J. (1988). Corrosion of intracellular granules and cell death. Proc. R. Soc. Lond., B234, 463–76

    Google Scholar 

  • Termine, J. D. (1972). Mineral chemistry and skeletal biology. Clin. Orthop., 85, 207–41

    Google Scholar 

  • Termine, J. D. and Eanes, E. D. (1972). Comparative chemistry of amorphous and apatitic calcium phosphate preparations. Calcif. Tiss. Res., 10,171-5

    Google Scholar 

  • Walton, A. G., Bodin, W. J., Furedi, H. and Schwartz, A. (1967). Nucleation of calcium phosphate from solution. Can. J. Chem., 45, 2695–701

    Google Scholar 

  • Watt, I. (1983). Radiology of the crystal-associated arthrides. Ann. Rheum. Dis., 42 (Suppl. 1), 73–80

    Google Scholar 

  • Weiner, S. and Traub, W. (1986). Organization of hydroxyapatite crystals within collagen fibrils. FEBS Lett., 206, 262–6

    Google Scholar 

  • Wheeler, E. J. and Lewis, D. (1977). An X-ray study of the paracrystalline nature of bone apatite. Calcif. Tiss. Res., 24, 243–8

    Google Scholar 

  • White, S. W., Hulmes, D. J. S., Miller, A. and Timmins, P. A. (1977). Collagen-mineral axial relationship in calcified turkey leg tendon by X-ray and neutron diffraction. Nature, Lond., 266, 421–5

    Google Scholar 

  • Woodhead-Galloway, J., Young, W. H. and Hukins, D. W. L. (1980). Description of irregularity in biological structures. Acta Crystallogr., A36, 198–205

    Google Scholar 

  • Young, R. A. and Brown, W. E. (1982). Structures of biological minerals. In Biological Mineralization and Demineralization (ed. G. H. Nancollas), Springer, Berlin, 101–41

    Google Scholar 

  • Young, R. A., Mackie, P. E. and von Dreele, R. B. (1977). Application of the pattern-fitting structure-refinement method to X-ray powder diffraction. J. Appl. Crystallogr., 10, 262–9

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1989 The contributors

About this chapter

Cite this chapter

Hukins, D.W.L. (1989). Mineral deposits in tissues. In: Hukins, D.W.L. (eds) Calcified Tissue. Topics in Molecular and Structural Biology. Palgrave, London. https://doi.org/10.1007/978-1-349-09868-2_1

Download citation

Publish with us

Policies and ethics