Physicochemical Properties of Vascular Elastin

  • C. P. Winlove
  • K. H. Parker
Chapter
Part of the Topics in Molecular and Structural Biology book series (TMSB)

Abstract

The existence of distinct elastic elements in the blood vessel wall was recognized by the early histologists (Henle, 1843), but knowledge of the chemistry of elastin evolved only slowly (Richards and Gres, 1902). The biochemical properties of elastin have also excited relatively little attention in comparison with collagen and the proteoglycans, but with the development of new experimental techniques there has been a resurgence of interest and some significant recent advances in our understanding (Mecham, 1981; Sandberg et al., 1981; Rosenbloom, 1984). A review written only 15 years ago commented: ‘There is probably more confusion in the minds of histologists, physiologists, biochemists and pathologists concerning the properties of this unique substance (the “elastica”) than any other of the components of blood vessel walls’ (Cliff, 1976). In concentrating on the physicochemical properties of elastic tissue, this chapter might have hoped to avoid areas of controversy. However, investigations on the mechanical properties have a history of confusion and contradiction, and the fact that studies on other aspects of elastin biophysics are surrounded by less controversy probably merely reflects the lower level of interest in these areas.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaron, B. B. and Gosline, J. M. (1981). Elastin as a random-network elastomer: a mechanical and optical analysis of single elastin fibres. Biopolymers, 20, 1247–1260Google Scholar
  2. Abatangelo, G., Daga-Gordini, D., Garbin, G. and Cortivo, R. (1974). Calcium ion binding study on a-elastin. Biochim. Biophys. Acta, 371, 526–533Google Scholar
  3. Adams, C. W. M. (1967). Vascular Histochemistry. Lloyd-Luke, LondonGoogle Scholar
  4. Andrady, A. L. and Mark, J. E. (1980). Thermoelasticity of swollen elastin networks at constant composition. Biopolymers, 19, 849–855Google Scholar
  5. Apter, J. T. and Marquez, E. (1968). Correlation of visco-elastic properties of large arteries with microscopic structure. Circ. Res., 22, 393–404Google Scholar
  6. Apter, J. T., Rabmowitz, M. and Cummings, D. H. (1966). Correlation of visco-elastic properties of large arteries with microscopic structure. Circ. Res., 19, 104–121Google Scholar
  7. Arey, L. B. (1963). In Orbison, J. L. and Smith S. E. (Eds), The Peripheral Blood Vessels. Williams and Wilkins, Baltimore, pp. 1–16Google Scholar
  8. Banga, I. and Balo, J. (1961). Elasticity of the vascular wall. I. The elastic tensibility of the human carotid as a function of age and arteriosclerosis. Acta Physiol. Hung., 20, 249–256Google Scholar
  9. Bendall, J. R. (1955). The titration curves of elastin and of the derived α- and β-proteins. Biochem. J., 61, 31–32Google Scholar
  10. Bourdillon, M. C., Soleilhac, J. M., Crouzet, B., Robert, L. and Hornebeck, W. (1984). Influence of lipoproteins on elastase-type activity of arterial smooth muscles in culture. Cell. Biol. Int. Rep., 8, 415–421Google Scholar
  11. Burton, A. C. (1951). On the physical equilibrium of small blood vessels. Am J. Physiol., 164, 319–329Google Scholar
  12. Burton, A. C. (1954). Relation of structure to function of the tissues of the wall of blood vessels. Physiol. Rev., 34, 619–642Google Scholar
  13. Bush, K., McGarvey, K. A., Gosline, J. M. and Aaron, B. B. (1982). Solute effects on the mechanical properties of arterial elastin. Conn. Tiss. Res., 9, 157–163Google Scholar
  14. Ceccorulli, G., Scandola, M. and Pezzin, B. (1977). Calorimetric investigation of some elastin-solvent systems. Biopolymers, 16, 1505–1512Google Scholar
  15. Chaudiere, J., Derouette, J. C., Mendy, F., Jacotot, B. and Robert, L. (1980) In vitro preparation of elastin-triglyceride complexes. Fatty acid uptake and modification of the susceptibility to elastase action. Atherosclerosis, 36, 183–194Google Scholar
  16. Claire, M., Jacotot, B. and Robert, L. (1976). Characterization of lipids associated with macromolecules of the intercellular matrix of human aorta. Conn. Tiss. Res., 4, 61–71Google Scholar
  17. Clark, J. M. and Glagov, S. (1985). Transmural organization of the arterial media: the lamellar unit revisited. Arteriosclerosis, 5, 19–34Google Scholar
  18. Cleary, E. G. and Cliff, W. J. (1978). Substructure of elastin. Exp. Molec. Pathol., 28, 227–246Google Scholar
  19. Cliff, W. J. (1976). Blood Vessels. Cambridge University Press, CambridgeGoogle Scholar
  20. Coulson, W. F. (1971). The effect of proteolytic enzymes on the tensile strength of whole aorta and isolated aortic elastin. Biochim. Biophys. Acta, 237, 378–386Google Scholar
  21. Cox, R. H. (1977). Effects of age on the mechanical properties of rat carotid artery. Am. J. Physiol., 233, H256–H263Google Scholar
  22. Cox, R. H. (1979). Alterations in active and passive mechanics of rat carotic artery with experimental hypertension. Am. J. Physiol., 237, H597–H604Google Scholar
  23. Cox, R. H. (1982). Changes in arterial wall properties during development and maintenance of renal hypertension. Am. J. Physiol., 242, H477–H484Google Scholar
  24. Crisp, J. D. C. (1968). On the mechanical equilibrium states of cylindrical blood vessels. Microvasc. Res., 1, 35–57Google Scholar
  25. Damude, L. C., Cope, D. A. and Roach, M. R. (1976). The effects of enzymatic digestion on the elastic properties of isolated human cerebral arteries. Can. J. Physiol. Pharmacol., 55, 161–169Google Scholar
  26. Dobrin, P. B. (1983). In Shepherd, J. and Abboud, F. (Eds), Handbook of Physiology, Section 2, Vol. 3, Cardiovascular System. American Physiological Society, Washington, D.C., pp. 65–102Google Scholar
  27. Dobrin, P. B., Baker, W. H. and Gley, W. C. (1984). Elastolytic and collagenolytic studies of arteries. Arch. Surg., 119, 405–409Google Scholar
  28. Dorrington, K. L. (1980). The theory of viscoelasticity in biomaterials. Symp. Soc. Exp. Biol., 34, 289–314Google Scholar
  29. Dorrington, K. L. and McCrum, N. G. (1977). Elastin as a rubber. Biopolymers, 16, 1201–1222Google Scholar
  30. Eisenstein, R. (1979). Vascular extracellular tissue and atherosclerosis. Artery, 5, 207–221Google Scholar
  31. Eisenstein, R., Ayer, J. P., Papajiannis, S., Haas, G. M. and Ellis, H. (1964). Mineral binding by human arterial elastic tissue. Lab. Invest., 13, 1198–1204Google Scholar
  32. Ellis, G. E. and Packer, K. J. (1976). Nuclear spin-relaxation studies of hydrated elastin. Biopolymers, 15, 813–832Google Scholar
  33. Fleming, W. W., Sullivan, C. E. and Torchia, G. A. (1980). Characterization of molecular motions in 13C-labeled aortic elastin by 13C-1H magnetic double resonance. Biopolymers, 19, 597–617Google Scholar
  34. Flint, M. H., Lyons, M. F., Meaney, M. F. and Williams, D. E. (1975). The Masson staining of collagen—an explanation of an apparent paradox. Histochem. J., 7, 529–546Google Scholar
  35. Fry, D. L. and Vaishnav, R. N. (1980). In Patel, D. F. and Vaishnav, R. N. (Eds), Basic Haemodynamics. University Park Press, Baltimore, pp. 425–482Google Scholar
  36. Fung, Y. C. (1981). Biomechanics: Mechanical Properties of Living Tissues. Springer-Verlag, New YorkGoogle Scholar
  37. Gerrity, R. G. (1972). Post-natal Development of the Rat Aorta: A Morphological and Biochemical Analysis. Ph.D. Thesis, Australian National UniversityGoogle Scholar
  38. Glatz, C. E. and Massaro, T. A. (1976). Influence of glycosaminoglycan content on mass transfer behavior of porcine artery wall. Atherosclerosis, 25, 165–173Google Scholar
  39. Gosline, J. M. (1976). The physical properties of elastic tissue. Int. Rev. Conn. Tiss. Res., 7, 211–249Google Scholar
  40. Gosline, J. M. (1978). Hydrophobie interaction and a model for the elasticity of elastin. Biopolymers, 17, 677–695Google Scholar
  41. Gosline, J. M. and French, C. J. (1979). Dynamic mechanical properties of elastin. Biopolymers, 18, 2091–2103Google Scholar
  42. Gosline, J. M. and Rosenbloom, J. (1984). In Piez, K. A. and Reddi, A. H. (Eds), Extracellular Matrix Biochemistry. Elsevier, New York, pp. 191–227Google Scholar
  43. Gosline, J. M., Yew, F. F. and Weis-Fogh, T. (1975). Reversible structural changes in a hydrophobic protein, elastin, as indicated by fluorescence probe analysis. Biopolymers, 14, 1811–1826Google Scholar
  44. Gotte, L. (1977). Recent observations on the structure and composition of elastin. Adv. Exp. Med. Biol., 79, 105–119Google Scholar
  45. Gotte, L., Mammi, M. and Pezzin, B. (1970). In Balazs, E. A. (Ed.), Chemistry and Molecular Biology of the Extracellular Matrix. Academic Press, New York, pp. 685–690Google Scholar
  46. Gotte, L., Volpin, D., Home, R. W. and Mammi, M. (1976). Electron microscopy and optical diffraction of elastin. Micron, 7, 95–102Google Scholar
  47. Gray, W. R., Sandberg, L. B. and Foster, J. A. (1973). Molecular models for elastin structure and function. Nature, 246, 461–466Google Scholar
  48. Grodzinsky, A. J. (1983). Electromechanical and physicochemical properties of connective tissue. CRC Crit. Rev. Biomed. Eng., 9, 133–199Google Scholar
  49. Guantieri, V., Tamburro, A. M. and Daga-Gordini, D. (1980). Conformational changes induced in kappa-elastin by cholesterol, taurocholate and unsaturated fatty acids. Int. J. Biol. Macromol., 2, 68–72Google Scholar
  50. Haas, G. M. (1939). Elastic tissue. Arch. Pathol., 27, 334–365, 583–613Google Scholar
  51. Haas, G. M. (1942). Elastic tissue. Arch. Pathol., 34, 807–879, 971–981Google Scholar
  52. Haas, G. M. (1943). Elastic tissue. Arch. Pathol., 35, 29–45Google Scholar
  53. Harkness, M. L. R., Harkness, R. D. and McDonald, D. A. (1957). The collagen and elastin content of the arterial wall in the dog. Proc. R. Soc. Lond., B146, 541–548Google Scholar
  54. Heath, D., Wood, E. H., DuShane, J. W. and Edwards, J. E. (1959). The structure of the pulmonary trunk at different ages and in cases of pulmonary hypertension and pulmonary stenosis. J. Pathol. Bacteriol., 77, 443–456Google Scholar
  55. Henle, J. (1843). Traite d’Anatomie Generale ou Histoire des Tissue et de la Composition Chimique du Corps Humain. Baillière, ParisGoogle Scholar
  56. Hoeve, C. A. J. (1977). Elastin elasticity in the presence of diluents. Adv. Exp. Med. Biol., 79, 607–620Google Scholar
  57. Hoeve, C. A. J. (1980). In Rowland, S. P. (Ed.), Water in Polymers. ACS Symposium Series 127, pp. 135–146Google Scholar
  58. Hoeve, C. A. J. and Flory, P. J. (1959). The elastic properties of elastin. J. Am. Chem. Soc., 80, 6523–6526Google Scholar
  59. Hoeve, C. A. J. and Flory, P. J. (1974). The elastic properties of elastin. Biopolymers, 13, 677–686Google Scholar
  60. Hoffman, A. S. (1971). In Bernent, A. L. (Ed.), Biomaterials. University of Washington, Seattle, pp. 285–312Google Scholar
  61. Hoffman, A. S., Grande, L. A., Gibson, P., Park, J. B., Daly, C. H., Bornstein, P. and Ross, R. (1973). In Kendei, R. M. (Ed.), Perspectives in Biomedical Engineering. Macmillan, LondonGoogle Scholar
  62. Hoffman, A. S., Grande, L. A. and Park, J. B. (1977). Sequential enzymolysis of human aorta and resultant stress-strain behavior. Biomat. Med. Dev. Art. Org., 5, 121–127Google Scholar
  63. Hornebeck, W. and Partridge, S. M. (1975). Conformation changes in fibrous elastin due to calcium ions. Eur. J. Biochem., 51, 73–78Google Scholar
  64. Hornebeck, W. and Robert, L. (1986). In Olsson, A. G. (Ed.), Atherosclerosis: Biology and Clinical Science. Churchill Livingstone, Edinburgh, pp. 125–134Google Scholar
  65. Jacob, M. P., Bellon, G., Robert, L., Hornebeck, W., Ayrault-Jarrier, M., Burdin, J. and Polonovski, J. (1981). Elastase-type activity associated with high density lipoproteins in human serum. Biochem. Biophys. Res. Commun., 103, 311–318Google Scholar
  66. Jacob, M. P., Hornebeck, W. and Robert, L. (1983). Studies on the interaction of cholesterol with soluble and insoluble elastins. Int. J. Biol. Macromol., 5, 275–278Google Scholar
  67. Jellinek, H. (1983). In Schettler, G., Nerem, R. M., Schmid-Schonbein, H., Morl, H. and Diehn, C. (Eds), Fluid Dynamics as a Localising Factor for Atherosclerosis. Springer-Verlag, New York, pp. 79–86Google Scholar
  68. Jordan, R. E., Hewitt, N., Lewis, W., Kagan, H. and Franzblau, C. (1974). Regulation of elastase-catalyzed hydrolysis of insoluble elastin by synthetic and naturally occurring hydrophobic ligands. Biochemistry, 13, 3497–3503Google Scholar
  69. Kagan, H. M., Crombie, G. D., Jordan, R. E., Lewis, W. and Franzblau, C. (1972). Proteolysis of elastin-ligand complexes—stimulation of elastase digestion of insoluble elastin by sodium dodecyl sulfate. Biochemistry, 11, 3412–3420Google Scholar
  70. Kakivaya, S. R. and Hoeve, C. A. J. (1975). The glass point of elastin. Proc. Natl Acad. Sci. USA, 72, 3505–3507Google Scholar
  71. Katz, E. P., Wachtel, E. J. and Maroudas, M. (1986). Extrafibrillar proteoglycans osmotically regulate the molecular packing of collagen in cartilage. Biochim. Biophys. Acta, 882, 136–139Google Scholar
  72. Keeley, F. W. and Partridge, S. M. (1974). Amino acid composition and calcification of human aortic elastin. Atherosclerosis, 19, 287–296Google Scholar
  73. Klynstra, F. B. and Bottcher, J. F. (1970). Permeability patterns in pig aorta. Atherosclerosis, 11, 451–462Google Scholar
  74. Kramsch, D. M. (1981). In McDonald, T. F. and Bleakley-Chandler, A. (Eds), Connective Tissues in Arterial and Pulmonary Disease. Springer-Verlag, New York, pp. 95–151Google Scholar
  75. Kramsch, D. M., Franzblau, C. and Hollander, W. (1971). The protein and lipid composition of arterial elastin and its relationship to lipid accumulation in the atherosclerotic plaque. J. Clin. Invest., 50, 1666–1677Google Scholar
  76. Kramsch, D. M. and Hollander, W. (1973). The interaction of serum and arterial lipoproteins with elastin of the arterial intima and its role in the lipid accumulation in atherosclerotic plaques. J. Clin. Invest., 52, 236–247Google Scholar
  77. Lake, L. W. and Armeniades, C. D. (1972). Structure-property relations of aortic tissue. Trans. Am. Soc. Artificial Int. Organs, 18, 202–209Google Scholar
  78. Lansing, A. I., Alex, M. and Rosenthal, T. B. (1950). Calcium and elastin in human arteriosclerosis. J. Gerontol., 5, 112–120Google Scholar
  79. LeFevre, M. and Rucker, R. B. (1983). Modification of arterial elastin in vivo. Effects of age and diet on changes in the N-terminal amino acid content of aorta elastin. Biochim. Biophys. Acta, 743, 338–342Google Scholar
  80. Leung, D. Y. M., Glagov, S. and Mathews, M. B. (1976). Cyclic stretching stimulates synthesis of matrix components by arterial smooth muscle cells in vitro. Science, N. Y., 191, 475–477Google Scholar
  81. Levick, R. (1987). Flow through interstitium and other fibrous matrices. Quart. J. Exp. Physiol., 72, 409–438Google Scholar
  82. Li, S. T. and Katz, E. P. (1976). Electrostatic model for collagen fibrils. Biopolymers, 15, 1439–1447Google Scholar
  83. Mannery, J. F. (1966). Connective tissue electrolytes. Fed. Proc., 25, 1799–1803Google Scholar
  84. Mark, J. E. (1976). Dependence of swelling of elastin on elongation and its importance in fluorescence probe analysis. Biopolymers, 15, 1853–1856Google Scholar
  85. Martin, G. R., Schiffmann, E., Bladen, H. A. and Nylen, M. (1963). Chemical and morphological studies on in vitro calcification of aorta. J. Cell Biol., 16, 243–252Google Scholar
  86. Mecham, R. P. (1981). Elastin biosynthesis: a look at the current scene. Conn. Tiss. Res., 8, 155–160Google Scholar
  87. Meyer, K. H. and Ferri, C. (1936). Die elastischen Eigenschaften der elastischen und der kollagenen Fasern und ihre molekulare Deutung. Pflügers Arch. ges. Physiol., 238, 78–90Google Scholar
  88. Minns, R. J. and Steven, F. S. (1977). The effect of calcium on the mechanical behaviour of aorta media elastin and collagen. Br. J. Exp. Pathol., 58, 572–579Google Scholar
  89. Moczar, M. and Robert, L. (1976). Action of human hyperlipidemic sera on the biosynthesis of intercellular matrix macromolecules in aorta organ cultures. Paroi Arterielle, 3, 105–113Google Scholar
  90. Molinari-Tosatti, M. P., Gotte, L. and Moret, V. (1971). Some features of binding of calcium ions to elastin. Calcif. Tiss. Res., 6, 329–334Google Scholar
  91. Mow, V. C., Hohnes, M. H. and Lai, W. M. (1984). Fluid transport and mechanical properties of articular cartilage: A review. J. Biomech., 17, 377–394Google Scholar
  92. Mukherjee, D. P., Kagan, H. M., Jordan, R. E. and Franzblau, C. (1976). Effect of hydrophobic elastin ligands on the stress-strain properties of elastin fibres. Conn. Tiss. Res., 4, 177–179Google Scholar
  93. Nakatake, J. and Yamamoto, T. (1987). Three-dimensional architecture of elastic tissue in athero-arteriosclerotic lesions of the rat aorta. Atherosclerosis, 64, 191–200Google Scholar
  94. Nestaiko, G. V. and Shekhter, A. B. (1982). In Chazov, E. I. and Smirnov, V. N. (Eds), Vessel Wall in Athero- and Thrombo-genesis. Springer-Verlag, Berlin, pp. 63–78Google Scholar
  95. Noma, A., Hirayama, T. and Yachi, A. (1983). Studies on the binding of plasma low density lipoproteins to arterial elastin. Conn. Tiss. Res., 11, 123–133Google Scholar
  96. Noma, A., Takahashi, T. and Wada, T. (1981). Elastin-lipid interaction in the arterial wall. Part 2. In vitro binding of lipoprotein-lipids to arterial elastin and the inhibitory effect of high density lipoproteins on the process. Atherosclerosis, 38, 373–382Google Scholar
  97. Noma, A., Takahashi, T., Yamada, K. and Wada, T. (1979). Elastin lipid interactions in the arterial wall. Atherosclerosis, 33, 29–39Google Scholar
  98. Oxlund, H. and Andreassen, T. T. (1980). The roles of hyaluronic acid, collagen and elastin in the mechanical properties of connective tissue. J. Anat., 131, 611–620Google Scholar
  99. Parker, F. (1960). An electron microscopic study of experimental atherosclerosis. Am. J. Pathol., 36, 19–53Google Scholar
  100. Parker, K. H. and Winlove, C. P. (1984). The macromolecular basis of the hydraulic conductivity of the arterial wall. Biorheology, 21, 181–196Google Scholar
  101. Partridge, S. M. (1962). Elastin. Adv. Protein Chem., 17, 227–302Google Scholar
  102. Partridge, S. M. (1967a). Diffusion of solutes in elastin fibres. Biochim. Biophys. Acta, 140, 132–141Google Scholar
  103. Partridge, S. M. (1967b). In Crewther, W. G. (Ed.), Symposium on Fibrous Proteins. Butterworths, London, pp. 246–264Google Scholar
  104. Partridge, S. M. (1979). In Stehbens, W. E. (Ed.), Haemodynamics and the Blood Vessel Wall. Charles C. Thomas, Springfield, Ill., pp. 238–293Google Scholar
  105. Partridge, S. M. (1980). The lability of elastin structure and its probable form under physiological conditions. Frontiers Matrix Biol., 8, 3–32Google Scholar
  106. Patel, D. J. and Vaishnav, R. N. (1972). In Bergel, D. (Ed.), Cardiovascular Fluid Dynamics II. Academic Press, London, pp. 1–64Google Scholar
  107. Puchtler, H., Waldrop, F. S. and Meloan, S. N. (1981). In McDonald, T. F. and Bleakley-Chandler, A. (Eds), Connective Tissues in Arterial and Pulmonary Disease. Springer-Verlag, New York, pp. 269–331Google Scholar
  108. Richards, A. N. and Gres, W. J. (1902). Chemical studies of elastin, mucoid, and other proteids in elastic tissue with some notes on ligament extractives. Am. J. Physiol., 7, 93–134Google Scholar
  109. Roach, M. R. (1983). The pattern of elastin in the aorta and large arteries of mammals.Google Scholar
  110. Development of the Vascular System (Ciba Foundation Symposium 100). Pitman, London, pp. 37–55Google Scholar
  111. Roach, M. R. and Burton, A. C. (1957). The reason for the shape of the distensibility curves of arteries. J. Biochem. Physiol., 35, 681–690Google Scholar
  112. Robert, B. and Robert, L. (1970). In Balazs, E. A. (Ed.), Chemistry and Molecular Biology of the Intercellular Matrix, Vol. 1. Academic Press, New York, pp. 665–670Google Scholar
  113. Robert, L. and Hornebeck, W. (1976). In Hall, D. (Ed.), The Methodology of Connective Tissue Research. Joynson-Bruwers, Oxford, pp. 81–104Google Scholar
  114. Robert, L. and Poullain, N. (1966). Structure de l’elastine. Role de forces hydrophobes. Archs Mal. Coeur, 59, Suppl. 3, 121–127Google Scholar
  115. Robert, L. and Robert, A. M. (1984). Elastin, elastase and atherosclerosis. Frontiers Matrix Biol., 8, 130–173Google Scholar
  116. Rosenbloom, J. (1984). Biology of disease. Elastin: relation of protein and gene structure to disease. Lab. Invest., 51, 605–623Google Scholar
  117. Ross, R. and Bornstein, P. (1969). The elastic fiber. 1. The separation and partial characterization of its macromolecular components. J. Cell Biol., 40, 366–381Google Scholar
  118. Rucker, R. B., Ford, D., Goettlich-Riemann, W. and Tom, K. (1974). Additional evidence for the binding of calcium ions to elastin at neutral sites. Calcif Tiss. Res., 14, 317–325Google Scholar
  119. Rucker, R. B. and Tinker, D. (1977). Structure and metabolism of arterial elastin. Int. Rev. Exp. Pathol., 17, 1–47Google Scholar
  120. Sage, H. and Gray, W. R. (1979). Studies on the evolution of elastin. 1. Phylogenetic distribution. Comp. Biochem. Physiol., 64B, 313–317Google Scholar
  121. Sandberg, L. B., Bruenger, E. and Cleary, E. G. (1975). Tropoelastin purification—improvements using enzyme inhibitors. Anal. Biochem., 64, 249–254Google Scholar
  122. Sandberg, L. B., Gray, W. R. and Bruenger, E. (1972). Structural studies of alanine-rich and lysine-rich regions of porcine aortic tropoelastin. Biochim. Biophys. Acta, 285, 433–438Google Scholar
  123. Sandberg, L. B., Gray, W. R., Foster, J. A., Torres, A. R. and Alvarez, V. L. (1977a). Primary structure of porcine tropoelastin. Adv. Exp. Med. Biol., 79, 277–284Google Scholar
  124. Sandberg, L. B., Gray, W. R. and Franzblau, C. (Eds) (1977b). Elastin and elastic tissue. Adv. Exp. Med. Biol., 79Google Scholar
  125. Sandberg, L. B., Soskel, N. T. and Leslie, J. G. (1981). Elastin structure, biosynthesis, and relation to disease states. New Engl. J. Med., 304, 566–577Google Scholar
  126. Scandola, M. and Pezzin, G. (1978). The low-temperature mechanical relaxation of elastin. II. The solvated protein. Biopolymers, 17, 213–223Google Scholar
  127. Seligman, M., Eilberg, R. G. and Fishmean, L. (1975). Mineralization of elastin extracted from human aortic tissues. Calcif. Tiss. Res., 17, 229–234Google Scholar
  128. Sherebrin, M. H., Song, S. H. and Roach, M. R. (1983). Mechanical anisotropy of purified elastin from the thoracic aorta of dog and sheep. Can. J. Physiol. Pharmacol., 61, 539–545Google Scholar
  129. Smith, E. B. (1974). Acid glycosaminoglycan, collagen and elastin content of normal artery, fatty streaks and plaques. Adv. Exp. Med. Biol., 43, 125–138Google Scholar
  130. Smith, E. B. and Staples, E. M. (1982). Plasma protein concentrations in interstitial fluid from human aortas. Proc. R. Soc. Lond., B217, 59–75Google Scholar
  131. Spiro, R. G. (1969). Glycoproteins—their biochemistry, biology and role in human disease. New Engl. J. Med., 281, 991–1001, 1043–1056Google Scholar
  132. Srinivasan, S. R., Yost, C., Radhakrisnamurthy, B., Dalferes, E. R. Jr. and Berenson, G. S. (1981). Lipoprotein-elastin interactions in human aorta fibrous plaque lesions. Atherosclerosis, 38, 137–147Google Scholar
  133. Starcher, B. C. and Urry, D. W. (1973). Elastin coacervate as a matrix for calcification. Biochem. Biophys. Res. Commun., 53, 210–216Google Scholar
  134. Steinberg, D. (1983). Lipoprotein and atherosclerosis—a look back and a look ahead. Arteriosclerosis, 3, 283–301Google Scholar
  135. Tokita, K., Kanno, K. and Ikeda, K. (1977). Elastin sub-fraction as binding site for lipids. Atherosclerosis, 28, 111–119Google Scholar
  136. Torchia, D. A. and Piez, K. A. (1973). Mobility of elastin chains as determined by 13CGoogle Scholar
  137. nuclear magnetic resonance. J. Molec. Biol., 76, 419–424Google Scholar
  138. Treloar, L. R. G. (1975). The Physics of Rubber Elasticity. Clarendon Press, OxfordGoogle Scholar
  139. Unna, P. G. (1896). Histochemie der Haut. Leipzig, Franz Deuticke [The Histopathology of Diseases of the Skin, translated by N. Walker. Macmillan, New York, 1928]Google Scholar
  140. Urry, D. W. (1971). Neutral sites for calcium ion binding to elastin and collagen: a charge neutralization theory for calcification and its relationship to atherosclerosis. Proc. Natl Acad. Sci. USA, 68, 810–814Google Scholar
  141. Urry, D. W. (1974). Studies on the conformation and interactions of elastin. Adv. Exp. Med. Biol., 43, 211–241Google Scholar
  142. Urry, D. W. (1978). Molecular perspectives of vascular wall structure and disease: the elastic component. Perspectives Biol. Med., 21, 265–295Google Scholar
  143. Urry, D. W. (1983). What is elastin; what is not? Ultrastruct. Pathol., 4, 227–251Google Scholar
  144. Urry, D. W., Starcher, B. and Partridge, S. M. (1969). Coacervation of solubilized elastin effects a notable conformational change. Nature, 222, 795–796Google Scholar
  145. van der Lei, B., Wildevuur, C. R. H. and Nieuwenhuis, P. (1986). Compliance and biodegradation of vascular grafts stimulate the regeneration of elastic laminae in neoarterial tissue: an experimental study in rats. Surgery, 99, 45–52Google Scholar
  146. Volpin, D. and Ciferri, A. (1970). In Balazs, E. A. (Ed.), Chemistry and Molecular Biology of the Intercellular Matrix, Vol. 1. Academic Press, New York, pp. 691–698Google Scholar
  147. Volpin, D., Pasquali-Ronchetti, I., Urry, D. W. and Gotte, L. (1976). Banded fibres in high-temperature coacervates of elastin peptides. J. Biol. Chem., 251, 6871–6873Google Scholar
  148. Weis-Fogh, T. and Anderson, S. O. (1970). In Balazs, E. A. (Ed.), Chemistry and Molecular Biology of the Intercellular Matrix, Vol. 1. Academic Press, New York, pp. 671–684Google Scholar
  149. Winlove, C. P. and Parker, K. H. (1987). In Staub, N. C., Hogg, J. C. and Hargans, A. R. (Eds), Interstitial Lymphatic Liquid and Solute Movement. Karger, Basle, pp. 74–81Google Scholar
  150. Winlove, C. P. and Parker, K. H. (1989a). Influence of solvent composition on the mechanical properties of arterial elastin. Biopolymers (in press)Google Scholar
  151. Winlove, C. P. and Parker, K. H. (1989b). Microcalorimetric investigations of the interactions of small ions with arterial elastin. Biochim. Biophys. Acta (submitted)Google Scholar
  152. Winlove, C. P., Parker, K. H. and Ewins, A. R. (1985). Reversible and irreversible interactions between elastin and plasma lipoproteins. Biochim. Biophys. Acta, 838, 374–380Google Scholar
  153. Winlove, C. P., Parker, K. H. and Ewins, A. R. (1988a). The uptake of ions and neutral solutes by the artery and artery wall preparations. Conn. Tiss. Res., 18, 83–93Google Scholar
  154. Winlove, C. P., Parker, K. H. and Ewins, A. R. (1988b). Some factors influencing the interactions of plasma lipoproteins with arterial elastin. Artery, 15, 292–303Google Scholar
  155. Wohlisch, E. (1932). Die thermischen Eigenschaften der faserig strukturierten Gebilde des tierischen Bewegungsapparatus. Ergebn. d. Physiol., 34, 406–493Google Scholar
  156. Woolf, N. (1982). Pathology of Atherosclerosis. Butterworths, LondonGoogle Scholar
  157. Young, T. (1809). On the functions of the heart and arteries. Phil. Trans. R. Soc. Lond., 99, 1–31199-228Google Scholar

Copyright information

© The Macmillan Press Ltd 1990

Authors and Affiliations

  • C. P. Winlove
  • K. H. Parker

There are no affiliations available

Personalised recommendations