Skip to main content

Solute Transport in Articular Cartilage and the Intervertebral Disc

  • Chapter

Part of the book series: Topics in Molecular and Structural Biology ((TMSB))

Abstract

The primary function of load-bearing cartilages such as articular cartilage and the intervertebral disc is mechanical. These cartilages both support and spread load and act as shock absorbers as well as having other mechanical roles. Articular cartilage, for instance, provides a low-friction, lubricating surface to the joints. The discs, on the other hand, provide the spinal column with flexibility which allows the trunk to bend or twist. The ability to withstand high external loads, and to fulfil these required mechanical roles over many decades, depends ultimately on the properties and organization of the macromolecular constituents of these tissues—in particular, collagen and proteoglycans. Collagen fibrils form a network of great tensile strength which is inflated with water through the hydrophilic nature of the proteoglycans to provide a tissue which is deformable but which can withstand compressive and shear loads (Broom and Marra, 1985). The continuing health of these tissues depends on the activity of the cartilage cells which synthesize, maintain and turn over the collagens and proteoglycans of the matrix.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, M. A. and Hutton, W. C. (1988). In Ghosh, P. (Ed.), The Biology of the Intervertebral Disc, Vol. 2. CRC Press, Boca Raton, pp. 39–72

    Google Scholar 

  • Adams, P., Eyre, D. R. and Muir, H. (1977). Biochemical aspects of development and ageing of human lumbar intervertebral discs. Rheum. Rehab., XVI, 22–29

    Google Scholar 

  • Aspden, R. M., Hickey, D. S. and Hukins, D. W. L. (1981). Determination of collagen fibril orientation in the cartilage of the vertebral end–plate. Connect. Tiss. Res., 9, 83–87

    Google Scholar 

  • Bayliss, M. T. and Venn, M. (1981). In Maroudas, A. and Holborow, E. J. (Eds), Studies in Joint Diseases, Vol. I. Pitman Medical, Tunbridge Wells, pp. 2–58

    Google Scholar 

  • Bernick, S. and Caillet, R. (1982). Vertebral end-plate changes with aging of human vertebrae. Spine, 7, 97–102

    Google Scholar 

  • Brodin, H. (1955). Paths of nutrition in articular cartilage and intervertebral discs. Acta Orthop. Scand., 24, 177–180

    Google Scholar 

  • Broom, N. D. (1988). In Nimni, M. E. (Ed.), Collagen, Vol. 2. CRC Press, Boca Raton

    Google Scholar 

  • Broom, N. D. and Marra, D. L. (1985). New structural concepts of articular cartilage demonstrated with a physical model. Conn. Tiss. Res., 14, 1–8

    Google Scholar 

  • Brown, M. D. and Tsaltas, T. T. (1976). Studies on the permeability of the intervertebral disc during skeletal maturation. Spine, 1, 240–244

    Google Scholar 

  • Byers, P. D., Bayliss, M. T., Maroudas, A., Urban, J. and Weightman, B. (1983). In Maroudas, A. and Holborow, E. J. (Eds), Studies in Joint Diseases II. Pitman Medical, Tunbridge Wells

    Google Scholar 

  • Bywaters, E. G. L. (1937). The metabolism of joint tissues. J. Pathol. Bacteriol., 44, 247–268

    Google Scholar 

  • Carney, S. L. and Muir, H. (1988). The structure and function of cartilage proteoglycans. Physiol. Rev., 68, 858–910

    Google Scholar 

  • Comper, W. D. and Laurent, T. C. (1978). Physiological function of connective tissue polysaccharides. Physiol. Rev., 58, 255–315

    Google Scholar 

  • Comper, W. D. and Preston, B. N. (1975). Model connective tissue systems: measurement of ion flux across gel membranes containing proteoglycans. J. Coll. Interface Sci., 53, 379–390

    Google Scholar 

  • Crock, H. V., Goldwasser, M. and Yoshizawa, H. (1988). In Ghosh, P. (Ed.), The Biology of the Intervertebral Disc, Vol. 1. CRC Press, Boca Raton, pp. 109–134

    Google Scholar 

  • Cummings, G. J., Handley, C. J. and Preston, B. N. (1979). Permeability of chondrocyte cultures to solutes of varying size, shape and charge. Biochem. J., 181, 257–266

    Google Scholar 

  • Curry, F.-R. E. (1984). Handbook of Physiology. The Cardiovascular System 8. American Physiological Society, Washington D.C., pp. 309–374

    Google Scholar 

  • Curry, F. E. and Michel, C. C. (1980). A fiber matrix model of capillary permeability. Microvasc. Res., 20, 96

    Google Scholar 

  • De Gennes, P. G. (1979). Brownian motions of flexible polymer chains. Nature, 282, 367–370

    Google Scholar 

  • Eyre, D. R. (1979). Biochemistry of the intervertebral disc. Int. Rev. Conn. Tiss. Res., 8, 227–291

    Google Scholar 

  • Fassbender, K., Pictryla, D., Di Muzio, M., Lenz, M. E., Schnitzer, T. J., Williams, J. M., Kuettner, K. E. and Thonar, E. J.-M. A. (1989). Affinity of cationic proteins of small and high molecular weights for anionic components of the extracellular matrix of articular cartilage. Trans. Orthop. Res. Soc., 35, 156

    Google Scholar 

  • Gray, M. L., Pizzanelli, A. M., Grodzinsky, A. J. and Lee, R. C. (1988). Mechanical and physicochemical determinants of the chondrocyte biosynthesis responses. J. Orthop. Res., 6, 888–892

    Google Scholar 

  • Grodzinsky, A. J. (1983). Electromechanical and physico-chemical properties of connective tissue. Crit. Rev. Biomed. Eng., 9,133–199

    Google Scholar 

  • Grynpas, M. D., Eyre, D. R. and Kirschner, D. A. (1980). Collagen type II differs from type I in native molecular packing. Biochim. Biophys. Acta, 626, 346–353

    Google Scholar 

  • Happey, F. (1980). In Sokoloff, L. (Ed.), The Joints and Synovial Fluid II. Academic Press, New York, pp. 95–139

    Google Scholar 

  • Harper, G. S., Comper, W. D., Preston, B. N. and Daivis, P. (1985). Concentration dependence of proteoglycan diffusion. Biopolymers, 24, 2165–2173

    Google Scholar 

  • Helfferich, F. (1962). Ion Exchange. McGraw-Hill, New York

    Google Scholar 

  • Hickey, D. S. and Hukins, D. W. L. (1980). Relation between the structure of the annulus fibrosus and the function and failure of the intervertebral disc. Spine, 5, 106–116

    Google Scholar 

  • Holm, S., Maroudas, A., Urban, J. P. G., Selstam, G. and Nachemson, A. (1981). Nutrition of the intervertebral disc: solute transport and metabolism. Conn. Tiss. Res., 8,101–119

    Google Scholar 

  • Holm, S. and Nachemson, A. (1985). Nutrition of the intervertebral disc: effects induced by vibrations. Orthop. Trans., 9, 451

    Google Scholar 

  • Holmes, M. H., Lai, W. M. and Mow, V. C. (1985). Singular perturbation analysis of the non-linear, flow dependent compressive stress relaxation behaviour of articular cartilage. J. Biochem. Eng., 107, 206–218

    Google Scholar 

  • Inoue, H. and Takeda, T. (1975). Three dimensional observations of collagen framework of lumbar intervertebral discs. Acta Orthop. Scand., 46, 949–956

    Google Scholar 

  • Katz, E. P., Wachtel, E. J. and Maroudas, A. (1986a). Extrafibrillar proteoglycans regulate the molecular packing of collagen in cartilage. Biochim. Biophys. Acta, 882, 136–139

    Google Scholar 

  • Katz, M. M., Hargens, A. R. and Garfin, S. R. (1986b). Intervertebral disc nutrition; diffusion versus convection. Clin. Orthop., 210, 243–245

    Google Scholar 

  • Lane, J. M., Brighton, C. T. and Menkowitz, B. J. (1977). Anaerobic and aerobic metabolism in articular cartilage. J. Rheum., 4, 334–342

    Google Scholar 

  • Levick, J. R. (1987a). Relation between hydraulic resistance and composition of the nterstitum. Adv. Microcirc., 13, 124–133

    Google Scholar 

  • Levick, J. R. (1987b). In Helminen, H. J., Kiviranta, I., Tammi, M., Saämaner, A.-M., Paukkonen, K. and Jervelin, J. (Eds), Joint Loading. John Wright, Bristol, pp. 149–186

    Google Scholar 

  • Lieb, W. R. and Stein, W. D. (1971). Implications of two different types of diffusion for biological membranes. Nature New Biol., 234, 220–222

    Google Scholar 

  • Lohmander, S. (1988). Proteoglycans of joint cartilage. Baillière’s Clin. Rheumat., 2, 37–62

    Google Scholar 

  • Lyons, G., Eisenstein, S. and Sweet, B. M. (1981). Biochemical changes in intervertebral disc degeneration. Biochim. Biophys. Acta, 673, 443–453

    Google Scholar 

  • McKibbon, B. and Maroudas, A. (1979). In Freeman, M. A. R. (Ed.), Adult Articular Cartilage, 2nd edn. Pitman Medical, London

    Google Scholar 

  • Mackie, J. S. and Meares, P. (1955). The diffusion of electrolytes in a cation-exchange resin membrane. Proc. R. Soc. Lond. A, 232, 498

    Google Scholar 

  • Mansour, J. M. and Mow, V. C. (1976). Permeability of articular cartilage under compressive strain and at high pressures. J. Bone Jt Surg., 58A, 509–516

    Google Scholar 

  • Marcus, R. F. (1973). The effect of low oxygen concentrations on growth glycolysis and sulphate incorporation by articular chondrocytes in monolayer culture. Arthr. Rheum., 16, 646–656

    Google Scholar 

  • Maroudas, A. (1970). Distribution and diffusion of solutes in articular cartilage. Biophys. J., 10, 365–379

    Google Scholar 

  • Maroudas, A. (1976). Transport of solutes through cartilage: permeability to large molecules. J. Anat., 122, 335–347

    Google Scholar 

  • Maroudas, A. (1979). In Freeman, M. A. R. (Ed.), Adult Articular Cartilage, 2nd edn. Pitman Medical, London

    Google Scholar 

  • Maroudas, A. and Bannon, C. (1981). Measurement of swelling pressure in cartilage. Biorheology, 18, 619–632

    Google Scholar 

  • Maroudas, A. and Evans, H. (1972). A study of ionic equilibria in cartilage. Conn. Tiss. Res., 1, 69–77

    Google Scholar 

  • Maroudas, A., Stockwell, R. A., Nachemson, A. and Urban, J. (1975). Factors involved in the nutrition of the human lumbar intervertebral disc: cellularity and diffusion of glucose in vitro. J. Anat., 120, 113–130

    Google Scholar 

  • Maroudas, A., Weinberg, P. D., Parker, K. H. and Winlove, C. P. (1989). The distribution and diffusivities of small ions in chondroitin sulphate, hyaluronate and some proteoglycan solutions. Biophys. Chem. (in press)

    Google Scholar 

  • Muir, H., Bullough, P. and Maroudas, A. (1970). The distribution of collagen in human cartilage with some of its physiological implications. J. Bone Jt Surg., 52B, 554–563

    Google Scholar 

  • Nachemson, A., Lewin, T., Maroudas, A. and Freeman, M. A. R. (1970). In vitro diffusion of dye through the end-plates and the annulus fibrosus of human lumbar inter-vertebral discs. Acta. Orthop. Scand., 41, 589–607

    Google Scholar 

  • Ogston, A. G. (1958). The spaces in a uniform random suspension of fibers. Trans. Faraday Soc., 54, 1754–1757

    Google Scholar 

  • Ogston, A.G., Preston, B. N. and Wells, J. D. (1973). On the transport of compact particles through solutions of chain polymers. Proc. R. Soc. Lond. A, 333, 297–316

    Google Scholar 

  • O’Hara, B. P., Urban, J. P. G. and Maroudas, A. (1989). Influence of cyclic loading on the nutrition of articular cartilage. Ann. Rheum. Dis. (in press)

    Google Scholar 

  • Pappenheimer, J. R., Rankin, E. M. and Bossero, L. M. (1951). Filtration, diffusion and molecular sieving through peripheral capillary membranes. A contribution to the pore theory of capillary permeability. Am. J. Physiol., 167, 13–46

    Google Scholar 

  • Parker, K. H., Winlove, C. P. and Maroudas, A. (1989). The theoretical distributions and diffusivities of small ions in chondroitin sulphate and hyaluronate. Biophys. Chem. (in press)

    Google Scholar 

  • Paulsson, M. and Heinegard, D. (1984). Non-collagenous cartilage proteins. Collagen Rel. Res., 4, 219–229

    Google Scholar 

  • Paulsson, S., Sylven, B., Hirsch, C. and Shellman, O. (1951). Biophysical and physiological investigations on cartilage and other mesenchymal tissues. III. The diffusion rate of various substances in normal bovine nucleus pulposus. Biochim. Biophys. Acta, 7, 207–213

    Google Scholar 

  • Preston, B. N., Laurent, T. C. and Comper, W. D. (1984). In Arnott, S., Rees, D. A. and Morris, E. R. (Eds), Molecular Biophysics of the Extracellular Matrix. Humana Press, Clifton, N.J., pp. 119–162

    Google Scholar 

  • Preston, B. N. and Snowden, J. McK. (1973). In Kulonen, E. and Pikkarainen, J. (Eds), Biology of the Fibroblast. Academic Press, New York, pp. 215–230

    Google Scholar 

  • Ratcliffe, J. F. (1980). The arterial anatomy of the adult human lumbar vertebral body: a microarteriographic study. J. Anat, 131, 57–79

    Google Scholar 

  • Rosenthal, Bowie, and Wagoner (1941). Studies in the metabolism of articular cartilage. Respiration and glycolysis of cartilage in relation to its age. J. Cell. Comp. Physiol., 17,221

    Google Scholar 

  • Schneiderman, R. (1987). Regulation of the Metabolism of Weightbearing Tissues. Ph.D. Thesis, Technion, Haifa

    Google Scholar 

  • Snowden, J. McK. and Maroudas, A. (1975). The distribution of serum albumin in human normal and degenerate cartilage. Biochim. Biophys. Acta, 428, 726–733

    Google Scholar 

  • Speer, D. P. and Dahners, L. (1979). The collagenous architecture of articular cartilage. Clin. Orthop., 139, 267–275

    Google Scholar 

  • Stairmand, J. W., Hohn, S. and Urban, J. P. G. (1984). Theoretical study of factors influencing transport of oxygen into the intervertebral disc. Int. J. Microcirc., 3, 406

    Google Scholar 

  • Stairmand, J. W., Holm, S. and Urban, J. P. G. (1989). Factors influencing oxygen concentrations in the intervertebral disc. Spine, submitted

    Google Scholar 

  • Stockwell, R. A. (1967). The cell density of human articular and costal cartilage. J. Anat., 101, 753–763

    Google Scholar 

  • Stockwell, R. A. (1971). The inter-relationship of cell density and cartilage thickness in mammalian articular cartilage. J. Anat., 109, 411–422

    Google Scholar 

  • Stockwell, R. A. (1979). Biology of Cartilage Cells. Cambridge University Press, Cambridge Tammi, M., Paukkonen, K., Kiviranta, I., Juvelin, J., Säamänen, A.-M. and Helminen, H. (1987). In Helminen, H. (Ed.), Joint Loading. John Wright, Bristol, pp. 64–88

    Google Scholar 

  • Torchia, D. A., Hasson, M. A. and Hascall, V. C. (1981). 13C nuclear magnetic resonance suggests a flexible proteoglycan core protein. J. Biol. Chem., 7129–7138

    Google Scholar 

  • Tushan, F., Rodnan, G. P. and Altman, M. (1969). Anaerobic glycolysis, lactate dehyd-rogenase (LDH) isoenzymes in articular cartilage. J. Ind. Clin. Med., 73, 649–656

    Google Scholar 

  • Twomey, L. and Taylor, J. (1985). Age changes in lumbar intervertebral discs. Acta Orthop. Scand., 56, 496–499

    Google Scholar 

  • Urban, J. P. G. and Bayliss, M. T. (1989). Regulation of proteoglycan synthesis rates in articular cartilage in vitro: effect of inorganic ions. Biochim. Biophys. Acta (in press) Urban, J. P. G., Holm, S. and Maroudas, A. (1978). Diffusion of small solutes in the intervertebral disc: an in vivo study. Biorheology, 15, 202–223

    Google Scholar 

  • Urban, J. P. G., Holm, S., Maroudas, A. and Nachemson, A. (1982). Nutrition of the intervertebral disc: effect of fluid flow on solute transport. Clin. Orthop., 170, 296–306

    Google Scholar 

  • Urban, J. P. G. and McMullin, J. F. (1985). Swelling pressure of the intervertebral disc: influence of collagen and proteoglycan contents. Biorheology, 22, 145–157

    Google Scholar 

  • Urban, J. P. G. and Maroudas, A. (1979). Measurement of fixed charge density and partition coefficients in the intervertebral disc. Biochim. Biophys. Acta, 586, 166–178

    Google Scholar 

  • Vignon, E., Arlot, M., Patricot, L. M. and Vignon, G. (1976). The cell density of human femoral head cartilage. Clin. Orthop., 121, 303–30866-90

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1990 The Macmillan Press Ltd

About this chapter

Cite this chapter

Urban, J.P.G. (1990). Solute Transport in Articular Cartilage and the Intervertebral Disc. In: Hukins, D.W.L. (eds) Connective Tissue Matrix. Topics in Molecular and Structural Biology. Palgrave, London. https://doi.org/10.1007/978-1-349-09865-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-09865-1_3

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-09867-5

  • Online ISBN: 978-1-349-09865-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics