Skip to main content

The Role of Extracellular Matrix in Development

  • Chapter
Connective Tissue Matrix

Part of the book series: Topics in Molecular and Structural Biology ((TMSB))

Abstract

The main roles of the extracellular matrix (ECM) in the mature animal are to maintain the integrity and strength of organs and to provide the structural components of tissues such as bone, cartilage and tendon. In the developing embryo, however, ECM not only participates in the morphogenesis of these tissues, but also has a series of other functions. There is now information showing that ECM provides an environment through which cells can migrate, provides a substratum for their adhesion and guidance and can provide stability to tissues in the process of formation. It can also create spaces, control growth and influence cell differentiation. ECM thus has a particularly interesting contribution to make to the emergence of structure in the embryoone that is far richer than is apparent from our knowledge of the roles of ECM in mature tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi, E. and Hayashi, T. (1985). In vitro formation of fine fibrils with a D-periodic banding pattern from type V collagen. Collagen Rel. Res., 5, 225–232

    Google Scholar 

  • Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. and Watson, J. D. (1989). Molecular Biology of the Cell. 2nd edn, Garland, New York, pp. 802–823

    Google Scholar 

  • Aufderheide, E., Chiquet-Ehrismann, R. and Ekblom, P. (1987). Epithelial-mesenchymal interactions in the developing kidney lead to expression of tenascin in the mesenchyme. J. Cell Biol., 105, 599–608

    Google Scholar 

  • Balinsky, B. I. (1981). An Introduction to Embryology, 5th edn. Holt, Rinehart & Winston, New York

    Google Scholar 

  • Bard, J. B. L. (1969). The in vitro Aggregation of Collagen Molecules: Growth and Polymorphism. Ph.D. Thesis, Manchester University

    Google Scholar 

  • Bard, J. B. L. (1990). Morphogenesis: The Molecular and Cellular Processes of Developmental Anatomy. CUP, Cambridge

    Google Scholar 

  • Bard, J. B. L. and Abbott, A. S. A. (1978). A matrix of glycosaminoglycans in the anterior chamber of chick and Xenopus embryonic eyes. Dev. Biol., 68, 472–486

    Google Scholar 

  • Bard, J. B. L. and Bansal, M. K. (1987). The morphogenesis of the chick primary corneal stroma I: New observations on collagen organisation in vivo help explain stromal deposition and growth. Development, 100, 175–185

    Google Scholar 

  • Bard, J. B. L., Bansal, M. K. and Ross, A. S. A. (1988). In Thorogood, P. and Tickle, C. (Eds), Craniofacial development. Development, 103 (Suppl.), 195–204

    Google Scholar 

  • Bard, J. B. L. and Hay, E. D. (1975). The behaviour of fibroblasts from the developing avian cornea: their morphology and movement in situ and in vitro. J. Cell Biol., 67, 400–418

    Google Scholar 

  • Bard, J. B. L., Hay, E. D. and Meller, S. M. (1975). Formation of corneal endothelium: a study of cell movement in vivo. Dev. Biol., 42, 334–361

    Google Scholar 

  • Bard, J. B. L. and Higginson, K. (1977). Fibroblast-collagen interactions in the formation of the secondary stroma of the chick cornea. J. Cell Biol., 74, 816–829

    Google Scholar 

  • Bard, J. B. L. and Kratochwil, K. (1987). Corneal morphogenesis in the Movl3 mutant mouse is characterized by normal cellular organization but disorganized and thin collagen. Development, 101, 547–556

    Google Scholar 

  • Bard, J. B. L., McBride, W. H. and Ross, A. R. (1983). Morphology of hyaluronidase-sensitive cell coats as seen in the SEM after freeze-drying. J. Cell Sci., 62, 371–383.

    Google Scholar 

  • Bard J. B. L. and Ross, A. S. A. (1982). The morphogenesis of the ciliary body of the avian eye. II: Differential enlargement causes an epithelium to buckle. Dev. Biol., 92, 87–96

    Google Scholar 

  • Bee, J. A. (1982). The development and patterns of innervation of the avian cornea. Dev. Biol., 92, 5–15

    Google Scholar 

  • Beloussov, L. V. (1980). The role of tensile fields and contact cell polarization in the morphogenesis of amphibian axial rudiments. Wilh. Roux’ Arch., 188, 1–7

    Google Scholar 

  • Bernanke, D. H. and Marwald, R. R. (1979). Effects of hyaluronic acid on cardiac cushion tissue cells in collagen matrix cultures. Texas Rep. Biol. Med., 39, 271–285

    Google Scholar 

  • Bernfield, M. R., Banerjee, S. D., Koda, J. E. and Rapraeger, A. C. (1984). In Trelstad, R. L. (Ed.), The Role of Extracellular Matrix in Development. Alan R. Liss, New York, pp. 542–572.

    Google Scholar 

  • Birk, D. E. and Silver, F. H. (1984). Collagen fibrillogenesis in vitro: comparison of types I, II and III. Arch. Biochem. Biophys., 235, 178–185

    Google Scholar 

  • Brinkley, L. L. and Morris-Wiman, J. (1987). Effects of chlorcyclizine-induced alterations on patterns of hyaluronate distribution during morphogenesis of the mouse secondary palate. Development, 100, 637–640

    Google Scholar 

  • Brown, S. S., Malinoff, H. L. and Wicha, M. S. (1983). Connectin: cell surface protein that binds both laminin and actin. Proc. Natl Acad. Sci. USA, 80, 5927–5930

    Google Scholar 

  • Burridge, K. (1986). Substrate adhesions in normal and transformed fibroblasts: organization and regulation of cytoskeletal, membrane and extracellular matrix components at focal contacts. Cancer Rev., 4, 18–78

    Google Scholar 

  • Campbell, S. and Bard, J. B. L. (1985). The acellular stroma of the chick cornea inhibits melanogenesis of the neural-crest-cell derived cells that colonise it. J. Embryol. Exp. Biol., 86, 143–154

    Google Scholar 

  • Couchman, J. R., Rees, D. A., Green, M. R. and Smith, C. G. (1982). Fibronectin has a dual role in locomotion and anchorage of primary chick fibroblasts and can promote entry into the division cycle. J. Cell Biol., 93, 402–410

    Google Scholar 

  • Dhouailly, D. and Sengel, P. (1973). Interactions morphogènes entre l’eiderme de reptile et de derme d’oiseau ou de mammifère. C.R. Acad. Sci. (Paris), Ser. D, 277, 1221–1224

    Google Scholar 

  • Duband, J.-L., Dufour, S., Hatta, K., Takeichi, M., Edelman, G. M. and Thiery, J. P. (1987). Adhesion molecules during somitogenesis in the avian embryo. J. Cell Biol., 104, 1361–1374

    Google Scholar 

  • Edelman, G. M. (1986). Cell adhesion molecules in the regulation of animal form and tissue pattern. Ann. Rev. Cell Biol., 2, 81–116 Gallin, W. J., Chuong, C.-M., Finkel, L. H. and Edelman, G. M. (1986). Antibodies to liver cell adhesion molecule perturb inductive interactions and alter feather pattern and structure. Proc. Natl Acad. Sci. USA, 83, 8235–8239

    Google Scholar 

  • Gordon, M. K., Gerecke, D. R. and Olsen, B. R. (1987). Type XII collagen: distinct extracellular matrix component discovered by cDNA cloning. Proc. Natl Acad. Sci. USA, 84, 6040–6044

    Google Scholar 

  • Hart, G. W. (1978). Biosynthesis of glycosaminoglycans by the separated tissues of the embryonic chick cornea. Dev. Biol., 62, 78–98

    Google Scholar 

  • Hartung, S., Jaenisch, R. and Breindl, M. (1986). Retrovirus insertion inactivates mouse α 1(I) collagen gene by blocking initiation of transcription. Nature, 320, 365–367

    Google Scholar 

  • Hassell, J. M., Noonan, D. M., Ledbetter, S. R. and Laurie, G. W. (1986). Biosynthesis and structure of the basement membrane proteoglycan containing heparin sulphate side-chains. CIBA Symp., 124 (Functions of Proteoglycans), 204–214

    Google Scholar 

  • Hauschka, S. D. and Konigsberg, I. R. (1966). The influence of collagen on the development of muscle cells. Proc. Natl Acad. Sci. USA, 55, 119–126

    Google Scholar 

  • Hay, E. D. (1980). Development of the vertebrate cornea. Int. Rev. Cytol., 63, 263–322

    Google Scholar 

  • Heinegard, D., Franzén, A., Hedbom, E. and Sommarin, Y. (1986). Common structures of the core proteins of interstitial proteoglycans. CIBA Symp., 124 (Functions of Proteoglycans), 204–214

    Google Scholar 

  • Heasman, J., Hynes, R. O., Swan, A. P., Thomas, V. A. and Wylie, C. C. (1981). Primordial germ cell of Xenopus embryos: the role of fibronectin in their adhesion during migration. Cell, 27, 437–447

    Google Scholar 

  • Hynes, R. O. (1981). In Hay, E. D. (Ed.), Cell Biology of Extracellular Matrix. Plenum Press, New York, pp. 295–333

    Google Scholar 

  • Hynes, R. O. (1987). Integrins: a family of cell surface receptors. Cell, 48, 549–554

    Google Scholar 

  • Johnston, M. C., Noden, D. M., Hazelton, R. D., Coulombre, J. L. and Coulombre, A. J. (1979). Origins of avian ocular and periocular tissues. Exp. Eye Res., 29, 27–43

    Google Scholar 

  • Kleinman, H. K., McGarvey, M. L., Hassell, J. R., Martin, G. R., Baron van Evercooren, A. and Dubois-Dalcq, M. (1984). In Trelstad, R. L. (Ed.), The Role of Extracellular Matrix in Development. Alan R. Liss, New York, pp. 123–143

    Google Scholar 

  • Kratochwil, K. (1986). In Gwatkin, R. B. L. (Ed.), Developmental Biology, Vol. 4. Plenum Press, New York, pp. 315–333

    Google Scholar 

  • Kratochwil, K., Dziadek, M., Löhler, J., Harbers, K. and Jaenisch, R. (1986). Normal epithelial branching in the absence of collagen I. Dev. Biol., 117, 596–606

    Google Scholar 

  • Kurkinen, M., Alitalo, K., Vaheri, A., Stenman, S. and Saxen, L. (1979). Fibronectin in the development of embryonic chick eye. Dev. Biol., 69, 589–600

    Google Scholar 

  • Lacy, B. E. and Underhill, C. B. (1987). The hyaluronate receptor is associated with actin filaments. J. Cell Biol., 105, 1395–1404

    Google Scholar 

  • Laurent, T. C. and Fraser, J. R. E. (1986). The properties and turnover of hyaluran. CIBA Symp., 124 (Functions of Proteoglycans), 9–23

    Google Scholar 

  • Linsenmayer, T. F., Fitch, J. M., Gross, J. and Mayne, R. (1985). Are collagen fibrils in the developing avian cornea composed of two different collagen types? Ann. N. Y. Acad. Sci., 460, 232–245

    Google Scholar 

  • Löhler, J., Timpl, R. and Jaenisch, R. (1984). Embryonic lethal mutation in mouse collagen I gene causes rupture of blood vessels and is associated with erythropoietic and mesenchyme cell death. Cell, 38, 597–607

    Google Scholar 

  • Maurice, D. M. (1957). The structure and transparency of the cornea. J. Physiol., 136, 263–286

    Google Scholar 

  • Mayne, R. (Ed.) (1987). Structure and Function of Collagen Types. Academic Press, New York

    Google Scholar 

  • Meier, S. and Hay, E. D. (1973). Synthesis of sulfated glycosaminoglycans by embryonic corneal epithelia. Dev. Biol., 35, 318–331

    Google Scholar 

  • Meier, S. and Hay, E. D. (1974). Control of corneal differentiation by extracellular materials. Collagen as a promoter and stabilizer of epithelial stromal production. Dev. Biol., 38, 249–270

    Google Scholar 

  • Nagafuchi, A., Shirayoshi, Y., Okazaki, K., Yasuda, K. and Takeichi, M. (1987). Transformation of cell adhesion properties by exogenously introducing E-cadherin cDNA. Nature, 329, 341–343

    Google Scholar 

  • Nakanishi, Y., Morita, T. and Nogawa, A. (1987). Cell proliferation is not required for the initiation of cleft formation in mouse embryonic submandibular epithelium in vitro. Development, 99, 429–438

    Google Scholar 

  • Nakatsuji, N., Smolira, M. A. and Wylie, C. C. (1985). Fibronectin visualized by scanning electron microscopy on the substratum for cell migration in Xenopus laevi gastrulae. Dev. Biol., 107, 264–268

    Google Scholar 

  • Nathanson, M. A. (1986). Transdifferentiation of skeletal muscle into cartilage: transformation or differentiation? Curr. Top. Dev. Biol., 20, 39–62

    Google Scholar 

  • Newgreen, D. and Thiery, J.-P. (1980). Fibronectin in early embryos: synthesis and distribution along the migration pathways of neural crest cells. Cell Tissue Res., 211, 269–291

    Google Scholar 

  • Paulsson, M., Fujiwara, S., Dziadek, M., Timpl, R., Pejler, G., Backstrom, G., Lindahl, U. and Engel, J. (1986). Structure and function of basement membrane proteoglycans. CIBA Symp., 124 (Functions of Proteoglycans), 189–199

    Google Scholar 

  • Pratt, R. M., Larsen, M. A. and Johnston, M. C. (1975). Migration of cranial neural crest cells in a cell-fee, hyaluronate-rich matrix. Dev. Biol., 44, 298–305

    Google Scholar 

  • Pytela, R. M., Pierschbacher, M. D. and Ruoslahti, E. (1985). Identification and isolation of a 140 kd cell surface glycoprotein with properties expected of a fibronectin receptor. Cell, 40, 191–198

    Google Scholar 

  • Rooney, P., Archer, C. and Wolpert, L. (1984). In Trelstad, R. L. (Ed.), The Role of Extracellular Matrix in Development. Alan R. Liss, New York, pp. 305–322

    Google Scholar 

  • Scott, J. E. (1986). Proteoglycan-collagen interactions. CIBA Symp., 124 (Functions of Proteoglycans), 104–116

    Google Scholar 

  • Sieber-Blum, M., Sieber, F. and Yamada, K. M. (1981). Cellular fibronectin promotes adrenergic differentiation of quail neural crest cells in vitro. Exp. Cell Res., 133, 285–295

    Google Scholar 

  • Silver, J. and Rutishauser, U. (1984). Guidance of optic axons in vivo by a preformed adhesive pathway on neuroendothelial endfeet. Dev. Biol., 106, 485–499

    Google Scholar 

  • Solursh, M., Fisher, M., Meier, S. and Singley, C. T. (1979). The role of extracellular matrix in the formation of the sclerotome. J. Embryol. Exp. Morphol., 54, 75–98

    Google Scholar 

  • Stopak, D. and Harris, A. K. (1982). Connective tissue morphogenesis by fibroblast traction. Dev. Biol., 90, 383–398

    Google Scholar 

  • Stopak, D., Wessells, N. K. and Harris, A. K. (1985). Morphogenetic rearrangement of injected collagen in developing chicken limb buds. Proc. Natl Acad. Sci. USA, 82, 2804–2808

    Google Scholar 

  • Sue Menko, A. and Boettiger, D. (1987). Occupation of the extracellular matrix receptor, integrin, is a control point for myogenic differentiation. Cell, 51, 51–57

    Google Scholar 

  • Sugrue, S. P. and Hay, E. D. (1986). The identification of extracellular matrix binding sites on the basal surface of embryonic corneal epithelium and the effect of ECM binding on epithelial collagen production. J. Cell Biol., 102, 1907–1916

    Google Scholar 

  • Svoboda, K. K. H. and Hay, E. D. (1987). Embryonic corneal epithelial interaction with exogenous laminin and basal lamina is F-actin dependent. Dev. Biol, 123, 455–469

    Google Scholar 

  • Tamkun, J. W., DeSimone, D. W., Fonda, D., Patel, R. S., Buck, C., Horwitz, A. F. and Hynes, R. O. (1986). Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell, 46, 271–282

    Google Scholar 

  • Thaller, C. and Eichele, G. (1987). Identification and spatial distribution of retinoids in the developing chick limb bud. Nature, 327, 625–628

    Google Scholar 

  • Thorogood, P., Bee, J. and von der Mark, K. (1986). Transient expression of collagen type II at epitheliomesenchymal interfaces during morphogenesis of the cartilaginous neurocranium. Dev. Biol., 116, 497–509

    Google Scholar 

  • Timpl, R. and Dziadek, M. (1986). Structure, development and molecular pathology of basement membranes. Int. Rev. Pathol., 29, 1–112

    Google Scholar 

  • Toole, B. P. (1981). In Hay, E. D. (Ed.), Cell Biology of Extracellular Matrix. Plenum Press, New York, pp. 259–293

    Google Scholar 

  • Toole, B. P. and Trelstad, R. L. (1971). Hyaluronate production and removal during corneal development in the chick. Dev. Biol., 26, 28–35

    Google Scholar 

  • Trelstad, R. L. and Coulombre, A. J. (1971). Morphogenesis of the collagenous stroma in the chick cornea. J. Cell Biol., 50, 840–858

    Google Scholar 

  • Trelstad, R. L. and Hayashi, K. (1979). Tendon fibrillogenesis: Intracellular subassemblies and cell surface changes associated with fibril growth. Dev. Biol., 71, 228–242

    Google Scholar 

  • Tucker, R. P., Edwards, B. F. and Erickson, C. A. (1985). Tension in the culture dish: microfilament organization and migratory behaviour of quail neural crest cells. Cell Motil., 5, 225–237

    Google Scholar 

  • Tucker, R. P. and Erickson, C. A. (1986). Pigment cell pattern formation in Taricha torosa: the role of extracellular matrix in controlling cell migration and differentiation. Dev. Biol., 118, 268–285

    Google Scholar 

  • von der Mark, K., von der Mark, H., Timpl, R. and Trelstad, R. L. (1977). Immunofluorescent localization of collagen types I, II and III in the embryonic chick eye. Dev. Biol., 58, 75–85

    Google Scholar 

  • Wayner, E. A. and Carter, W. G. (1987). Identification of multiple cell adhesion receptors for collagen and fibronectin in human fibrosarcoma cells possessing unique α and common β subunits. J. Cell Biol, 105, 1873–1884

    Google Scholar 

  • Weiss, P. A. (1961). Guiding principles in cell locomotion and aggregation. Expl. Cell Res., suppl. 8, 260–281

    Google Scholar 

  • Weston, J. A., Ciment, G. and Girdlestone, J. (1984). In Trelstad, R. L. (Ed.), The Role of Extracellular Matrix in Development. Alan R. Liss, New York, pp. 433–460

    Google Scholar 

  • Zalik, S. E. and Milos, N. C. (1986). In Bowder, L. W. (Ed.), Developmental Biology, a Comprehensive Synthesis. Vol. II: The Cellular Basis of Morphogenesis. Plenum Press, New York, pp. 145–19444-65

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1990 The Macmillan Press Ltd

About this chapter

Cite this chapter

Bard, J.B.L. (1990). The Role of Extracellular Matrix in Development. In: Hukins, D.W.L. (eds) Connective Tissue Matrix. Topics in Molecular and Structural Biology. Palgrave, London. https://doi.org/10.1007/978-1-349-09865-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-09865-1_2

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-09867-5

  • Online ISBN: 978-1-349-09865-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics