Advertisement

Recent Progress in the Quantitation of Phagocytosis

  • T. W. Jungi

Abstract

Since the discovery of phagocytosis by Metchnikoff, this process has been recognized as being an important mechanism for the defence and self-preservation of multicellular organisms. In higher vertebrates, specialized cells (the so-called professional phagocytes), namely polymorphonuclear leukocytes (PMNs) and mononuclear phagocytes, fulfil this task. Operationally, phagocytosis can be divided into several phases: (i) recognition and binding of the prey to be ingested, (ii) actual ingestion, and (iii) elimination of the engulfed particle. In order to recognize the material to be internalized, a variety of specific binding sites are expressed on the phagocyte surface which specifically bind to surface determinants of the target, e.g. β-glucan on microorganisms (Czop and Austen, 1985). Some of these determinants are host-derived humoral factors (‘opsonins’) fixed to the target surface, e.g. antibodies or split products of the complement component C3 (Newman et al, 1980; Wright and Silverstein, 1982). Thus, for optimal performance of phagocytosis, not only cellular but also humoral requirements must be satisfied. Depending on the cellular state, the type of receptors triggered and the intensity of triggering, this binding event is transduced to the motile apparatus in a manner which promotes ingestion and enclosure of the particle within a phagocytic vacuole; alternatively, binding to receptors may not be followed by ingestion (Newman et al., 1980; Wright and Silverstein, 1982; Pommier et al., 1983).

Keywords

Candida Albicans Acridine Orange Polymorphonuclear Leukocyte Respiratory Burst Chronic Granulomatous Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. Allen, R. C. (1977). Evaluation of serum opsonic capacity by quantitating the initial chemiluminescence response from phagocytizing polymorphonuclear leukocytes. Infect. Immunity, 15, 828–833Google Scholar
  2. Allen, R. C. (1981). In DeLuca, M. and McElroy, W. (eds.), Bioluminescence and Chemiluminescence, Academic Press, New York, 63–73Google Scholar
  3. Allen, R. C. and Liebermann, M. M. (1984). Kinetic analysis of microbe opsonification based on stimulated polymorphonuclear leukocyte oxygenation activity. Infect. Immunity, 45, 475–482Google Scholar
  4. Allen, R. C., Stjernholm, R. L. and Steele, R. H. (1972). Evidence for the generation of an electronic excitation state(s) in human polymorphonuclear leukocytes and its participation in bactericidal activity. Biochem. Biophys. Res. Comm., 47, 679–684PubMedCrossRefGoogle Scholar
  5. Andreesen, R., Picht, R. and Löhr, G. W. (1983). Primary cultures of human blood-borne macrophages grown on hydrophobic teflon membranes. J. Immunol. Methods, 56, 295–304PubMedCrossRefGoogle Scholar
  6. Babior, B. M. (1984). The respiratory burst of phagocytes. J. Clin. Invest., 73, 599–601PubMedCentralPubMedCrossRefGoogle Scholar
  7. Babior, B., Kipnes, R. S. and Curnutte, J. T. (1973). Biological defense mechanisms. The production by leukocytes of Superoxide, a potential bactericidal agent. J. Clin. Invest., 52, 741–744PubMedCentralPubMedCrossRefGoogle Scholar
  8. Badway, J. A. and Karnowsky, M. L. (1980). Active oxygen species and the function of phagocytic leukocytes. Annu. Rev. Biochem., 49, 695–726CrossRefGoogle Scholar
  9. Baehner, R. L., Boxer, L. A. and Davis, J. (1976). The biochemical basis of nitroblue tetrazolium reduction in normal human and chronic granulomatous disease polymorphonuclear leukocytes. Blood, 48, 309–313PubMedGoogle Scholar
  10. Baehner, R. L. and Nathan, D. G. (1968). Quantitative nitroblue tetrazolium test in chronic granulomatous disease. N. Engl. J. Med., 278, 971–976PubMedCrossRefGoogle Scholar
  11. Barak, M., Ulitzur, S. and Merzbach, D. (1983). The use of luminous bacteria for determination of phagocytosis. J. Immunol Methods, 64, 353–363PubMedCrossRefGoogle Scholar
  12. Barak, M., Ulitzur, S. and Merzbach, D. (1984). Elucidation of the phagocytosis mechanism with the aid of luminous bacteria. J. Med. Microbiol., 18, 65–72PubMedCrossRefGoogle Scholar
  13. Barbour, A. G., Allred, C. D., Solberg, C. O. and Hill, H. R. (1980). Chemiluminescence by polymorphonuclear leukocytes from patients with active bacterial infection. J. Infect. Dis., 141, 14–26PubMedCrossRefGoogle Scholar
  14. Bassøe, C.-F., Laerum, O. D., Glette, J., Hopen, G., Haneberg, B. and Solberg, C. O. (1983). Simultaneous measurement of phagocytosis and phagosomal pH by flow cytometry: role of polymorphonuclear neutrophilic leukocyte granules in phagosome acidification. Cytometry, 4, 254–262PubMedCrossRefGoogle Scholar
  15. Biegel, D. and Rabinovitch, M. (1983). Measurement of phagocytosis utilizing 51 Cr-labeled tannic acid treated erythrocytes. J. Immunol Methods, 58, 19–23PubMedCrossRefGoogle Scholar
  16. Bistoni, F., Baccarini, M., Blasi, E., Puccetti, P. and Marconi, P. (1982). A radiolabel release microassay for phagocytic killing of Candida albicans. J. Immunol Methods, 52, 369–377Google Scholar
  17. Bjerknes, R. (1984). Flow cytometric assay for combined measurement of phagocytosis and intracellular killing of Candida albicans. J. Immunol Methods, 72, 229–241Google Scholar
  18. Boghossian, S. H., Wright, G. and Segal, A. W. (1983). The kinetic measurement of phagocyte function in whole blood. J. Immunol Methods, 60, 125–140PubMedCrossRefGoogle Scholar
  19. Boveris, A., Oshino, N. and Chance, B. (1972). The cellular production of hydrogen peroxide. Biochem. J., 128, 617–630PubMedCentralPubMedCrossRefGoogle Scholar
  20. Bøyum, A. (1968). Isolation of mononuclear cells and granulocytes from human blood. Scand. J. Clin. Lab. Invest., 21, Suppl. 97, 77–89Google Scholar
  21. Braun, D. P., Harris, J. E., Maximovich, S., Marder, R. and Lint, T. F. (1981). Chemiluminescence in peripheral blood mononuclear cells of solid tumor cancer patients. Cancer Immunol Immunother., 12, 31–37CrossRefGoogle Scholar
  22. Bridges, C. G., DaSilva, G. L., Yamamura, M. and Valdimarsson, H. (1980). A radiometric assay for the combined measurement of phagocytosis and intracellular killing of Candida albicans. Clin. Exp. Immunol., 42, 226–233Google Scholar
  23. Briheim, G., Stendhal, O. and Dahlgren, C. (1984). Intra- and extracellular events in luminol-dependent chemiluminescence of polymorphonuclear leukocytes. Infect. Immunity, 45, 1–5Google Scholar
  24. Brown, K. N. and Percival, A. (1978). Penetration of antimicrobials into tissue culture cells and leucocytes. Scand. J. Inf. Dis. Suppl, 14, 251–260Google Scholar
  25. Bruchelt, G. and Schmidt, K. H. (1984). Comparative studies on the oxidative processes during phagocytosis measured by luminol-dependent chemiluminescence. J. Clin. Chem. Clin. Biochem., 22, 1–13PubMedGoogle Scholar
  26. Cheung, K., Archibald, A. C. and Robinson, M. F. (1983). The origin of chemiluminescence produced by neurophils stimulated by opzonized zymosan. J. Immunol., 130, 2324–2329PubMedGoogle Scholar
  27. Cooper, P. H., Mayer, P. and Baggiolini, M. (1984). Stimulation of phagocytosis in bone marrow-derived mouse macrophages by bacterial lipopolysaccharide: correlation with biochemical and functional parameters. J. Immunol., 133, 913–922PubMedGoogle Scholar
  28. Czop, J. K. and Austen, K. F. (1985). Properties of glycans that activate the human alternative complement pathway and interact with the human mono-cyteβ-glucan receptor. J. Immunol., 135, 3388–3393PubMedGoogle Scholar
  29. Czop, J. K., Fearon, D. T. and Austen, K. F. (1978). Membrane sialic acid on target particles modulates their phagocytosis by a trypsin-sensitive mechanism on human monocytes. Proc. Natl. Acad. Sci. USA, 75, 3831–3835PubMedCentralPubMedCrossRefGoogle Scholar
  30. DeChatelet, L. R., Long, G. D., Shirley, P. S., Bass, D. A., Thomas, M. J., Henderson, F. W. and Cohen, M. S. (1982). Mechanism of the luminoldependent chemiluminescence of human neutrophils. J. Immunol., 129, 1589–1593PubMedGoogle Scholar
  31. DeChatelet, L. R. and Parce, J. W. (1981). In Edelson, P. J. and Koren, H. (eds.), Methods for Studying Mononuclear Phagocytes, Academic Press, New York, 477–488Google Scholar
  32. DeChatelet, L. R. and Shirley, P. S. (1981). Evaluation of chronic granulomatous disease by chemiluminescence assay of microliter quantities of whole blood. Clin. Chem., 21, 1739–1741Google Scholar
  33. Dérer, M., Walker, C., Kristensen, F. and Reinhardt, M. C. (1983). A simple and rapid flow cytometric method for routine assessment of baker’s yeast uptake by human polymorphonuclear leukocytes. J. Immunol. Methods, 61, 359–365Google Scholar
  34. Deschamps-Latscha, B., Feuillet-Fieux, M.-N., Baruchel, A., Patereau, C. and Nguyen, A.-T. (1984). Activation du métabolisme oxydatif des granulocytes et des monocytes par des plaquettes recouvertes d’IgG provenant de patients porteurs de thrombopénies, C.R. Acad. Sc. Paris, 298/III, 419–422Google Scholar
  35. Dunn, P. A. and Tyrer, H. W. (1981). Quantitation of neutrophil phagocytosis, using fluorescent latex beads. Correlation of microscopy and flow cytometry. J. Lab. Clin. Med., 98, 374–381PubMedGoogle Scholar
  36. Edelson, P. J., Zwiebel, R. and Cohn, Z. A. (1982). The pinocytosis rate of activated macrophages. J. Exp. Med., 142, 1150–1164CrossRefGoogle Scholar
  37. Faden, H. and Maciejewski, N. (1981). Whole blood luminol-dependent chemiluminescence. J. Reticuloendothel. Soc., 30, 219–226PubMedGoogle Scholar
  38. Finbloom, D. S. (1985). Binding, endocytosis and degradation of model immune complexes by murine macrophages at various levels of activation. Clin. Immunol. Immunopathol., 36, 275–288PubMedCrossRefGoogle Scholar
  39. Friedrich, E. A. and Gliniorz, R. (1981). A rapid new method of measuring phagocytosis and cytotoxicity in macrophage tissue cultures. J. Immunol. Methods, 47, 259–262PubMedCrossRefGoogle Scholar
  40. Fujikawa-Yamamoto, K. and Wada, M. (1983). Flow cytometry of the phagocytosis of fluorescent microspheres in V79 cells. Cell Struct. Fund., 8, 373–377CrossRefGoogle Scholar
  41. Glass, W., Jenssen, H. L., Mix, E. and Friedrich, A. (1984). Flow cytometric measurements of phagocytosis. I. A methodical and comparative study. Biochem. Biophys. Acta, 43, 187–196Google Scholar
  42. Handin, R. I. and Stossel, T. P. (1974). Phagocytosis of antibody-coated platelets by human granulocytes. New Engl. J. Med., 290, 989–993PubMedCrossRefGoogle Scholar
  43. Hemming, V. G., Hall, R. T., Rhodes, P. G., Shigeoka, G. O. and Hill, H. R. (1976). Assessment of group B streptococcal opsonins in human and rabbit serum by neurophil chemiluminescence. J. Clin. Invest., 58, 1379–1387PubMedCentralPubMedCrossRefGoogle Scholar
  44. Henson, P. M. (1971). The immunologic release of constituents from neutrophil leukocytes. I. The role of antibody and complement on nonphagocytosable surfaces or phagocytosable particles. J. Immunol., 107, 1535–1546PubMedGoogle Scholar
  45. Herbert, W. J. (1978). In Weir, D. M. (ed.), Handbook of Experimental Immunology, Vol. 1, Blackwell, Oxford, 20.1–20.20Google Scholar
  46. Horn, W., Hansmann, C. and Federlin, K. (1985). An improved fluorochrome microassay for the detection of living and nonliving intracellular bacteria in human neurophils. J. Immunol. Methods, 83, 233–240PubMedCrossRefGoogle Scholar
  47. Humbert, J. R., Gross, G. P., Vatter, A. E. and Hathaway, W. E. (1973). Nitro-blue-tetrazolium reduction by neutrophils: biochemical and ultrastructural effects of methylene blue. J. Lab. Clin. Med., 82, 20–30PubMedGoogle Scholar
  48. Husseini, R. H., Hoadley, M. E., Hutchinson, J. J. P., Penn, C. W. and Smith, H. (1985). Intracellular killing of Candida albicans by human polymorphonuclear leucocytes: comparison of three methods of assessment. J. Immunol. Methods, 81, 215–221PubMedCrossRefGoogle Scholar
  49. Johnston, R. B. (1981). In Adams, D. O., Edelson, P. J. and Koren, H. (eds.), Methods for Studying Mononuclear Phagocytes, Academic Press, New York, 489–497Google Scholar
  50. Johnston, R. B. and Kitagawa, S. (1985). Molecular basis for the enhanced respiratory burst of activated macrophages. Fed. Proc., 44, 2927–2932PubMedGoogle Scholar
  51. Jungi, T. W. (1985). A rapid and sensitive method allowing photometric determination of erythrophagocytosis by mononuclear phagocytes. J. Immunol. Methods, 82, 141–153PubMedCrossRefGoogle Scholar
  52. Jungi, T. W. and Barandun, S. (1985). Estimation of the degree of opsonization of homologous erythrocytes by IgG for intravenous and intramuscular use. Vox Sang., 49, 9–19Google Scholar
  53. Jungi, T. W., Spycher, M. O., Nydegger, U. E. and Barandun, S. (1986). Platelet leukocyte interaction. I. Selective binding of thrombin-stimulated platelets to human monocytes, polymorphonuclear leukocytes and related cell lines. Blood, 67, 629–636PubMedGoogle Scholar
  54. Kanegasaki, S., Homma, J. Y., Homma, H. and Washizaki, M. (1981). Enhanced chemiluminescence response of phagocyting monocytes from sarcoidosis patients. Int. Archs. Allergy Appl. Immun., 64, 72–79CrossRefGoogle Scholar
  55. Kaplan, G. (1977). Differences in the mode of phagocytosis with Fc-receptors and C3 receptors in macrophages. Scand. J. Immunol., 6, 797–807PubMedCrossRefGoogle Scholar
  56. Kasten, F. H. (1967). Cytochemical studies with acridine orange and the influence of dye contaminants in the staining of nucleic acids. Int. Rev. Cytol., 21, 141–202PubMedCrossRefGoogle Scholar
  57. Kiyotaki, C., Shimizu, A., Watanabe, S. and Yamamura, Y. (1978). Superoxide production from human polymorphonuclear leucocytes stimulated with immunoglobulins of different classes and fragments of IgG bound to polystyrene dishes. Immunology, 35, 613–618PubMedCentralPubMedGoogle Scholar
  58. Klebanoff, S. J. (1971). Iodination of bacteria: a bactericidal mechanism. J. Exp.Med., 126, 1063–1078CrossRefGoogle Scholar
  59. Kurlander, R. J. (1980). Reversible and irreversible loss of Fc receptor function of human monocytes as a consequence of interaction with immunoglobin G. J. Clin. Invest., 66, 773–781PubMedCentralPubMedCrossRefGoogle Scholar
  60. Lee, D. A., Hoidal, J. R., Clawson, C. C., Quie, P. G. and Peterson, P. K. (1983). Phagocytosis by polymorphonuclear leukocytes of Staphylococcus aureus and Pseudomonas aeruginosa adherent to plastic, agar, or glass. J. Immunol. Methods, 63, 103–114PubMedCrossRefGoogle Scholar
  61. Lehrer, R. I. (1975). Fungicidal mechanisms of human monocytes. I. Evidence for myeloperoxidase-linked and myeloperoxidase-independent mechanisms. J. Clin. Invest, 55, 338–346PubMedCentralPubMedCrossRefGoogle Scholar
  62. Lehrer, R. I. (1981). In Adams, D. O., Edelson, P. J. and Koren, H. (eds.), Methods for Studying Mononuclear Phagocytes, Academic Press, New York, 693–708Google Scholar
  63. Leijh, P. C. J., van den Barselaar, M. T., van Zwet, T. L., Dubbeldeman-Rempt, I. and van Furth, R. (1979). Kinetics of phagocytosis of Staphylococcus aureus and Escherichia coli by human granulocytes. Immunology, 37, 453–465PubMedCentralPubMedGoogle Scholar
  64. Leslie, R. G. Q. (1985). Macrophage handling of soluble immune complexes: evaluation of mechanisms involved in the selective clearance of complexes from the circulation. Mol. Immunol., 22, 513–519PubMedCrossRefGoogle Scholar
  65. Levinsky, R. J., Harvey, H. A. M. and Paleja, S. (1978). A rapid objective method for measuring yeast opsonisation activity in serum. J. Immunol. Methods, 24, 251–256PubMedCrossRefGoogle Scholar
  66. Loike, J. D. and Silverstein, S. C. (1983). A fluorescent quenching technique using trypan blue to differentiate between attached and ingested glutaraldehy de-fixed red blood cells in phagocytosing murine macrophages. J. Immunol. Methods, 57, 373–379PubMedCrossRefGoogle Scholar
  67. Markert, M. and Frei, J. (1979). The energy metabolism of the leucocyte. X. Kinetics of oxygen consumption during phagocytosis by polymorphonuclear leucocytes. A photometric method. Enzyme, 24, 327–336Google Scholar
  68. Maródi, L., Leijh, P. C. J. and van Furth, R. (1983). A micromethod for the separate evaluation of phagocytosis and intracellular killing of Staphylo-coccus aureus by human monocytes and granulocytes. J. Immunol Methods, 57, 353–361PubMedCrossRefGoogle Scholar
  69. McMillan, R., Longmire, R. L., Tavassoli, M., Armstrong, S. and Yelenosky, R. (1974). In vitro platelet phagocytosis by splenic leukocytes in idiopathic thrombocytopenic purpura. New Engl. J. Med., 290, 249–251PubMedCrossRefGoogle Scholar
  70. Michl, J., Pieczonka, M., Unkeless, J. C. and Silverstein, S. C. (1979). Effects of immobilized immune complexes on Fc and complement-receptor function in resident and thioglycollate-elicited mouse peritoneal macrophages. J. Exp. Med., 150, 607–621PubMedCrossRefGoogle Scholar
  71. Mills, E. L., Thompson, T., Björkstén, B., Filopovich, D. and Quie, P. G. (1979). The chemiluminescence response and bactericidal activity of polymorphonuclear neutrophils from newborns and their mothers. Pediatrics, 63, 429–434PubMedGoogle Scholar
  72. Mossmann, H., Schmitz, B., Possart, P. and Hammer, D. K. (1981). Antibody-dependent cell-mediated cytotoxicity in cattle: transfer of IgG subclasses in relation to the protection of the newborn calf. Adv. Exp. Med. Biol., 137, 279–281PubMedGoogle Scholar
  73. Nakagawara, A. and Nathan, C. F. (1983). A simple method for counting adherent cells: application to cultured human monocytes, macrophages and multinucleated giant cells. J. Immunol. Methods, 56, 261–268PubMedCrossRefGoogle Scholar
  74. Nakamura, M., Nakamura, M. A., Okamura, J. and Kobayashi, J. (1978). A rapid and quantitative assay of phagocytosis-connected oxygen-consumption by leukocytes in whole blood. J. Lab. Clin. Med., 91, 568–575PubMedGoogle Scholar
  75. Nathan, C. F. (1981). In Adams, D. O., Edelson, P. J. and Koren, H. (eds.), Methods for Studying Mononuclear Phagocytes, Academic Press, New York, 499–510Google Scholar
  76. Newman, S. L., Musson, R. A. and Henson, P. M. (1980). Development of functional complement receptors during in vitro maturation of human monocytes into macrophages. J. Immunol., 125, 2236–2244PubMedGoogle Scholar
  77. Osterholz, J., Luckenbach, A., Bross, K. J., M. P. G., Löhr, G. W. and Andreesen, R. (1984). A new quantitative assay for the determination of the phagocytic activity of cells from the human monocyte-macrophage lineage. Blut, 49, 226 (abstract)Google Scholar
  78. Pantazis, C. G. and Kniker, W. T. (1979). Assessment of blood leukocyte microbial killing by using a new fluorochrome microassay. J. Reticuloendothel. Soc., 26, 155–170Google Scholar
  79. Park, B. N., Fikrig, S. M. and Smithwick, E. M. (1968). Infection and nitrobluetetrazolium reduction by neutrophils. Lancet, II, 532–534Google Scholar
  80. Peterhans, E., Bertoni, G., Köppel, P., Wyler, R. and Keller, R. (1984). Antibody-free target cells stimulate chemiluminescence in polymorphonuclear leukocytes: an artifact due to mycoplasma contamination. Eur. J. Immunol., 14, 201–203PubMedCrossRefGoogle Scholar
  81. Pick, E. and Mizel, D. (1981). Rapid microassay for the measurement of superoxide and hydrogen peroxide production by macrophages in culture using an automatic enzyme immunoassay reader. J. Immunol. Methods, 46, 211–226PubMedCrossRefGoogle Scholar
  82. Pommier, C. G., Inada, S., Fries, L. F., Takahashi, T., Frank, M. M. and Brown,Google Scholar
  83. E. J. (1983). Plasma fibronectin enhances phagocytosis of opsonized particles by human peripheral blood monocytes. J. Exp. Med., 157, 1844–1854Google Scholar
  84. Pruzanski, W., Saitos, S. and Nitzan, D. W. (1983). The influence of lysostaphin on phagocytosis, intracellular bactericidal activity and chemotaxis of human polymorphonuclear cells. J. Lab. Clin. Med., 102, 198–305Google Scholar
  85. Richardson, M. D., Kearns, M. J. and Smith, H. (1982). Differentiation of extracellular from ingested Candida albicans blastospores in phagocytosis tests by staining with fluorescein-labelled concanavalin A. J. Immunol. Methods, 52, 241–244PubMedCrossRefGoogle Scholar
  86. Roberts, P. J. and Ford, J. M. (1982). A new combined assay of phagocytosis and intracellular killing of Escherichia coli by polymorphonuclear leukocytes. J. Immunol. Methods, 49, 193–207PubMedCrossRefGoogle Scholar
  87. Root, R. K., Metcalf, J., Oshino, N. and Chance, B. (1975). H2O2 release from human granulocytes during phagocytosis. I. Documentation, quantitation, and some regulating factors. J. Clin. Invest., 55, 945–955PubMedCentralPubMedCrossRefGoogle Scholar
  88. Rossi, F., Bellavite, B., Dobrina, A., Dri, T. and Zabucchi, G. (1980). In van Furth, R. (ed.), Mononuclear Phagocytes: Functional Aspects, Martinus Nijhoff, The Hague, 1187–1213Google Scholar
  89. Rothwell, D. D. and Doumas, B. T. (1975). The effect of heparin and EDTA on the NBT test. J. Lab. Clin. Med., 85, 950–956PubMedGoogle Scholar
  90. Ruch, W., Cooper, P. H. and Baggiolini, M. (1983). Assay of H2O2 production by macrophages and neutrophils with homovanillic acid and horseradish peroxidase. J. Immunol. Methods, 63, 347–357PubMedCrossRefGoogle Scholar
  91. Rummage, J. A. and Leu, R. W. (1985). Photometric microassay for quantitation of macrophages Fc and C3b receptor function. J. Immunol. Methods, 77, 155–163PubMedCrossRefGoogle Scholar
  92. Rush, D. N. and Keown, P. A. (1984). Human monocyte chemiluminescence triggered by IgG aggregates. Requirement of phospholipase activation and modulation by Fc receptor ligands. Cell. Immunol., 87, 252–258PubMedCrossRefGoogle Scholar
  93. Sahlin, S., Hed, J. and Rundquist, I. (1983). Differentiation between attached and ingested immune complexes by a fluorescence quenching cytofluoro-metric assay. J. Immunol. Methods, 60, 115–124PubMedCrossRefGoogle Scholar
  94. Schnyder, J. and Baggiolini, M. (1978). Role of phagocytosis in the activation of macrophages.J Exp. Med., 148, 1449–1457Google Scholar
  95. Schöpf, R. E., Mattar, J., Meyenburg, W., Scheiner, O., Hammann, K. P. and Lemmel, E.-M. (1984). Measurement of the respiratory burst in human monocytes and polymorphonuclear leukocytes by nitroblue-tetrazolium reduction and chemiluminescence. J. Immunol. Methods, 67, 109–117PubMedCrossRefGoogle Scholar
  96. Schroeder, F. and Kinden, D. A. (1983). Measurement of phagocytosis using fluorescent latex beads. J. Biochem. Biophys. Methods, 8, 15–27PubMedCrossRefGoogle Scholar
  97. Scott, W. A., Zrike, J. M., Hamill, A. L., Kempe, J. and Cohn, Z. A. (1980). Regulation of arachidonic acid metabolites in macrophages. J. Exp. Med., 152, 324–335PubMedCrossRefGoogle Scholar
  98. Segal, A. W. and Coade, S. B. (1978). Kinetics of oxygen consumption by phagocytosing human neurophils. Biochem. Biophys. Res. Comm., 84, 611–617PubMedCrossRefGoogle Scholar
  99. Seim, S. (1983). Role of myeloperoxidase in the luminol-dependent chemiluminescence response of phagocytosing human monocytes. Acta Path. Microbiol. Immunol. Scand. Sect. C, 91, 123–128Google Scholar
  100. Selvaraj, R. J., Sbarra, A. J., Thomas, G. B., Cetrulo, C. L. and Mitchell, G. W. (1982). A microtechnique for studying chemiluminescence response of phagocytes using whole blood and its application to the evaluation of phagocytes in pregnancy. J. Reticuloendothel Soc., 31, 3–16PubMedGoogle Scholar
  101. Shaw, D. R., Maurelli, A. T., Goguen, J. D., Straley, S. C. and Curtis, R., III (1983). Use of UV-inactivated bacteriophage T6 to kill extracellular bacteria in tissue culture infectivity assay. J. Immunol. Methods, 56, 75–83PubMedCrossRefGoogle Scholar
  102. Smith, D. L. and Rommel, F. (1977). A rapid micro method for the simultaneous determination of phagocytic-microbicidal activity of human peripheral blood leukocytes in vitro. J. Immunol. Methods, 17, 241–247PubMedCrossRefGoogle Scholar
  103. Soligo, D. and de Harven, E. (1982). Iron carbonyl, a tracer for phagocytosis in scanning electron microscopy. J. Reticuloendothel Soc., 32, 201–207PubMedGoogle Scholar
  104. Sorkin, E. and Boyden, S. V. (1959). Studies on the fate of antigens in vitro. I. The effect of specific antibody on the fate of I131 trace labeled human serum albumin in vitro in the presence of guinea pig monocytes. Immunol., 82, 332–339Google Scholar
  105. Steigbigel, R. T., Johnson, P. K. and Remington, J. S. (1974). The nitroblue-tetrazolium reduction test versus conventional hematology in the diagnosis of bacterial infection. New Engl. J. Med., 290, 235–238PubMedCrossRefGoogle Scholar
  106. Steinkamp, J. A., Wilson, J. S., Saunders, G. C. and Stewart, C. C. (1982). Phagocytosis: flow cytometric quantitation with fluorescent microspheres. Science, 215, 64–66PubMedCrossRefGoogle Scholar
  107. Stevens, P., Winston, D. J. and van Dyke, K. (1978). In vitro evaluation of opsonic and cellular granulocyte function by luminol-dependent chemiluminescence: utility in patients with severe neutropenia and cellular deficiency states. Infect. Immunity, 22, 41–51Google Scholar
  108. Stevens, P. and Young, L. S. (1977). Quantitative granulocyte chemiluminescence in the rapid detection of impaired opsonization of Escherichia coli. Infect. Immunity, 16, 796–804Google Scholar
  109. Stossel, T. P. (1973). Evaluation of opsonic and leukocyte function with a spectrophotometric test in patients with infection and with phagocytic disorders. Blood, 42, 121–130PubMedGoogle Scholar
  110. Stossel, T. P., Alper, C. A. and Rosen, F. S. (1973). Serum-dependent phagocytosis of paraffin oil emulsified with bacterial lipopolysaccharide. J. Exp. Med., 137, 690–705PubMedCentralPubMedCrossRefGoogle Scholar
  111. Strauss, R. R., Paul, B. B., Jacobs, A. A. and Sbarra, A. J. (1970). Role of the phagocyte in host-parasite interactions. XXII. H2O2-dependent decarboxylation and deamination by myeloperoxidase and its relationship to antimicrobial activity. J. Reticuloendothel Soc, 7, 754–761PubMedGoogle Scholar
  112. Tan, J. S., Watanakunakorn, C. and Phair, J. P. (1971). A modified assay of neutrophil function; use of lysostaphin to differentiate defective phagocytosis from impaired intracellular killing. J. Lab. Clin. Med., 78, 316–322PubMedGoogle Scholar
  113. Tono-Oka, T., Ueno, N., Matsumoto, T., Ohkawa, M. and Matsumoto, S. (1983). Chemiluminescence of whole blood. 1. A simple and rapid method for the estimation of phagocytic function of granulocytes and opsonic activity in whole blood. Clin. Immunol. Immunopathol., 26, 66–75PubMedCrossRefGoogle Scholar
  114. Tsuge, I., Kiyotaki, C., Yamamura, Y., Ito, M., Tokuma, Y. and Shimizu, A. (1982). A quantitative assay of phagocytosis using liposomes with trapped spin labels. J. Reticuloendothel. Soc, 31, 405–413PubMedGoogle Scholar
  115. Uchida, T., Kanno, T. and Hosaka, S. (1985). Direct measurement of phagosomal reactive oxygen by luminol-binding microspheres. J. Immunol. Methods, 77, 55–61PubMedCrossRefGoogle Scholar
  116. Ueda, M. J., Ito, T., Ohnishi, S. and Okada, T. S. (1981). Phagocytosis by macrophages. I. Kinetics of adhesion between particles and phagocytes. J. Cell. Sci., 51, 173–188PubMedGoogle Scholar
  117. Van Furth, R. and Diesselhoff-Den Dulk, M. M. C. (1980). Method to prove ingestion of particles by macrophages with light microscopy. Scand. J. Immunol., 12, 265–269PubMedCrossRefGoogle Scholar
  118. Vaudaux, P. E., Zulian, G., Huggler, E. and Waldvogel, F. A. (1985). Attachment of Staphylococcus aureus to polymethylmethacrylate increases its resistance to phagocytosis in foreign body infection. Infect. Immunity, 50, 472–477Google Scholar
  119. Verhoef, J., Peterson, P. K. and Quie, P. G. (1977). Kinetics of staphylococcal opsonisation, attachment, ingestion and killing by human polymorphonuclear leukocytes: a quantitative assay using [3H] thymidine labeled bacteria. J. Immunol. Methods, 14, 303–311Google Scholar
  120. Vernon, J., Kemp, A. S., van Asperen, P. P., Worsdall, P. and Roy, L. P. (1984). Yeast opsonization and phagocytosis studied by a visual assay and measurement of neutrophil chemiluminescence. J. Clin. Lab. Immunol., 14, 93–97PubMedGoogle Scholar
  121. Ward, P. A. and Zvaifler, N. J. (1973). Quantitative phagocytosis by neutrophils. I. A new method with immune complexes. J. Immunol., 111, 1771–1776PubMedGoogle Scholar
  122. Warheit, D. B., Hill, L. H. and Brody, A. R. (1983). Pulmonary macrophage phagocytosis: quantification by secondary and backscattered electron imaging. Scan. Electron. Microsc., 1, 431–437Google Scholar
  123. Weber, L. and Peterhans, E. (1983). Stimulation of chemiluminescence in bovine polymorphonuclear leucocytes by virus-antibody complexes and by antibodycoated infected cells. Immunobiol., 164, 333–342Google Scholar
  124. Weissman, G., Zurier, R. and Hoffstein, S. (1972). Leukocytic proteases and the immunologic release of lysosomal enzymes. Amer. J. Pathol., 68, 539–559Google Scholar
  125. Weston, W. L., Dustin, R. A. and Hecht, S. K. (1975). Quantitative assays of human monocyte-macrophage function. J. Immunol Methods, 8, 213–222PubMedCrossRefGoogle Scholar
  126. Williams, A. J. and Cole, P. J. (1981). Human bronchoalveolar lavage cells and luminol-dependent chemiluminescence. J. Clin. Pathol, 34, 167–171PubMedCentralPubMedCrossRefGoogle Scholar
  127. Wilson, C. B., Tsai, V. and Remington, J. S. (1980). Failure to trigger the oxidative metabolic burst by normal macrophages. Possible mechanism for survival of intracellular pathogens. J. Exp. Med., 151, 328–346PubMedCrossRefGoogle Scholar
  128. Wilson, M. E., Trush, M. A., van Dyke, K., Kyle, J. M., Mullett, M. D. and Neal, W. A. (1978). Luminol-dependent chemiluminescence analysis of opsonophagocytic dysfunctions. J. Immunol. Methods, 23, 315–326CrossRefGoogle Scholar
  129. Wright, S. D. and Silverstein, S. C. (1982). Tumor-promoting phorbol esters stimulate C3b and C3b’ receptor-mediated phagocytosis in cultured human monocytes. J. Exp. Med., 156, 1149–1164PubMedCrossRefGoogle Scholar
  130. Yamamura, M., Boler, J. and Valdimarsson, H. (1976). A51 chromium release assay for phagocytic killing of Candida albicans. J. Immunol. Methods, 13, 227–233Google Scholar
  131. Yamamura, M., Boler, J. and Valdimarsson, H. (1977). Phagocytosis measured as inhibition of uridine uptake by Candida albicans. J. Immunol. Methods, 14, 19–24Google Scholar
  132. Yoo, D., Weems, H. and Lessin, L. S. (1982). Platelet to leukocyte adherence phenomena (platelet satellitism) and phagocytosis by neutrophils associated with in vitro platelet dysfunction. Acta Haemat., 68, 141–148Google Scholar

Copyright information

© S. B. Pal and the Contributors 1988

Authors and Affiliations

  • T. W. Jungi

There are no affiliations available

Personalised recommendations