Skip to main content

Crossbridge Movements Monitored by Extrinsic Probes

  • Chapter
Molecular Mechanisms in Muscular Contraction

Part of the book series: Topics in Molecular and Structural Biology ((TMSB))

Abstract

An appealing model of the molecular mechanism of muscle contraction proposes that active protein elements of the mechanism move in a cyclical manner in synchrony with the hydrolysis of ATP to produce muscle shortening against a load. In a muscle fibre the proteins myosin and actin make up about 55 per cent and 15 per cent of the fibre weight, respectively, and are spatially arranged into filaments. The filaments are interdigitated so that each myosin filament is equidistant from six actin filaments, as in Figure 7.1. The globular head region of the myosin molecule projects from the myosin filament backbone and is free to move across the interfilament space and bind to actin. The timely conversion of the free energy of ATP hydrolysis to useful mechanical work, in accordance with a moving protein model, requires that energy transduction take place inside the myosin molecule where the ATPase site is located. Actin is also of interest in this class of models, since the actin filament has a specific binding site for myosin. The possibility that the cyclical interaction of myosin and actin during muscle contraction produces muscle shortening against a load is suggested by the observation that the specific actomyosin affinity in a fibre varies over several orders of magnitude, depending on the substrate intermediates that occupy the myosin ATPase site.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ajtai, K. and Burghardt, T. P. (1986). Observation of two orientations from rigor cross-bridges in glycerinated muscle fibers. Biochemistry, 25, 6203–6207

    Article  PubMed  CAS  Google Scholar 

  • Ajtai, K. and Burghardt, T. P. (1987). Probe studies of the MgADP state of muscle cross-bridges: Microscopic and wavelength-dependent fluorescence polarization from 1,5-IAEDANS labeled myosin subfragment 1 decorating muscle fibers. Biochemistry, 26, 4517–4523

    Article  PubMed  CAS  Google Scholar 

  • Ajtai, K., French, A. R. and Burghardt, T. P. (1989). Myosin cross-bridge orientation in rigor and in the presence of nucleotide studied by electron spin resonance. Biophys. J., in press

    Google Scholar 

  • Aronson, J. F. and Morales, M. F. (1969). Polarization of tryptophan fluorescence in muscle. Biochemistry, 11, 4517–4522

    Article  Google Scholar 

  • Bélágyi, J. (1975). Orientation dependence in EPR spectra of spin labels in glycerinated muscle fibers. Acta Biochim. Biophys. Acad. Sci. Hung., 10, 233–242

    PubMed  Google Scholar 

  • Berliner, L. J. (Ed.) (1976). Spin Labeling: Theory and Application. Academic Press, New York

    Google Scholar 

  • Borejdo, J., Assulin, O., Ando, T. and Putnam, S. (1982). Cross-bridge orientation in skeletal muscle measured by linear dichroism of an extrinsic chromophore. J. Mol. Biol., 158, 391–414

    Article  PubMed  CAS  Google Scholar 

  • Borejdo, J. and Putnam, S. (1977). Polarization of fluorescence from single skinned glycerinated rabbit psoas fibers in rigor and relaxation. Biochim. Biophys. Acta, 459, 578–595

    Article  PubMed  CAS  Google Scholar 

  • Borejdo, J., Putnam, S. and Morales, M. F. (1979). Fluctuations in polarized fluorescence: Evidence that muscle cross-bridges rotate repetitively during contraction. Proc. Natl Acad. Sci. USA, 76, 6346–6350

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Botts, J., Muhlrad, A., Takashi, R. and Morales, M. F. (1982). Effect of tryptic digestion on myosin subfragment 1 and its actin-activated adenosinetriphosphatase. Biochemistry, 21, 6903–6905

    Article  PubMed  CAS  Google Scholar 

  • Brenner, B., Schoenberg, M., Chalovich, J. M., Green, L. E. and Eisenberg, E. (1982). Evidence for cross-bridge attachment in relaxed muscle at low ionic strength. Proc. Natl Acad. Sci. USA, 79, 7288–7291

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Burghardt, T. P. (1984). Model-independent fluorescence polarization for measuring order in a biological assembly. Biopolymers, 23, 2383–2406

    Article  PubMed  CAS  Google Scholar 

  • Burghardt, T. P. (1985). Time-resolved fluorescence polarization from ordered biological assemblies. Biophys. J., 48, 623–631

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Burghardt, T. P. and Ajtai, K. (1985). Fraction of myosin cross-bridges bound to actin in active muscle fibers: Estimation by fluorescence anisotropy measurements. Proc. Natl Acad. Sci. USA, 82, 8478–8482

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Burghardt, T. P. and Ajtai, K. (1986). Model-independent time-resolved fluorescence depolarization from ordered biological assemblies applied to restricted motion of myosin cross-bridges in muscle fibers. Biochemistry, 25, 3469–3478

    Article  PubMed  CAS  Google Scholar 

  • Burghardt, T. P. and French, A. R. (1989). Reconstruction of the probe angular distribution from a series of electron spin resonance spectra of tilted oriented samples. Biophys. J., in press

    Google Scholar 

  • Burghardt, T. P. and Thompson, N. L. (1985a). Model-independent electron spin resonance for measuring order of immobile components in a biological assembly. Biophys. J., 48, 401–409

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Burghardt, T. P. and Thompson, N. L. (1985b). Motion of myosin cross-bridges in skeletal muscle fibers studied by time-resolved fluorescence anisotropy decay. Biochemistry, 24, 3731–3735

    Article  PubMed  CAS  Google Scholar 

  • Burghardt, T. P., Tidswell, M. and Borejdo, J. (1984). Cross-bridge order and orientation in resting single glycerinated muscle fibers studied by linear dichroism of bound rhodamine labels. J. Muscle Res. Cell Motil., 5, 657–663

    Article  PubMed  CAS  Google Scholar 

  • Cantor, C. R. and Schimmel, P. R. (1980). In Biophysical Chemistry, Part II: Techniques for the Study of Biological Structure and Function. W. H. Freeman, San Francisco, pp. 433–538

    Google Scholar 

  • Cherry, R. J., Cogoli, A., Oppliger, M., Schneider, G. and Semenza, G. (1976). A spectroscopic technique for measuring slow rotational diffusion of macromolecules. 1: Preparation and properties of a triplet probe. Biochemistry, 15, 3653–3656

    Article  PubMed  CAS  Google Scholar 

  • Cherry, R. J. and Schneider, G. (1976). A spectroscopic technique for measuring slow rotational diffusion of macromolecules. 2: Determination of rotational correlation times of proteins in solution. Biochemistry, 15, 3657–3661

    Article  PubMed  CAS  Google Scholar 

  • Chuang, T. J. and Eisenthal, K. B. (1972). Theory of fluorescence depolarization by anisotropic rotational diffusion. J. Chem. Phys., 57, 5094–5097

    Article  CAS  Google Scholar 

  • Cooke, R., Crowder, M. S. and Thomas, D. D. (1982). Orientation of spin labels attached to cross-bridges in contracting muscle fibres. Nature, 300, 776–778

    Article  PubMed  CAS  Google Scholar 

  • Cooke, R. and Franks, K. (1980). All myosin heads form bonds with actin in rigor rabbit skeletal muscle. Biochemistry, 19, 2265–2269

    Article  PubMed  CAS  Google Scholar 

  • Crowder, M. S. and Cooke, R. (1984). The effect of myosin sulfhydryl modification on the mechanics of fiber contraction. J. Muscle Res. Cell Motil., 5, 131–146

    Article  PubMed  CAS  Google Scholar 

  • Crowder, M. and Cooke, R. (1987). Orientation of spin-labeled nucleotide bound to myosin in glycerinated muscle fibers. Biophys. J., 51, 323–333

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Davydov, A. S. (1963). In Quantum Mechanics. N.E.O. Press, Ann Arbor, pp. 141–168

    Google Scholar 

  • Dos Remedios, C. G., Millikan, R. G. C. and Morales, M. F. (1972). Polarization of tryptophan fluorescence from single striated muscle fibers. J. Gen. Physiol, 59, 103–120

    Article  PubMed  PubMed Central  Google Scholar 

  • Duke, J., Takashi, R., Ue, K. and Morales, M. F. (1976). Reciprocal reactivities of specific thiols when actin binds to myosin. Proc. Natl Acad. Sci. USA, 73, 302–306

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Eads, T. M., Thomas, D. D. and Austin, R. H. (1984). Microsecond rotational motion of eosin labeled myosin measured by time-resolved anisotropy of absorption and phosphorescence. J. Mol. Biol., 179, 55–81

    Article  PubMed  CAS  Google Scholar 

  • Ehrenberg, M. and Rigler, R. (1972). Polarized fluorescence and rotational Brownian motion. Chem. Phys. Lett., 14, 539–544

    Article  CAS  Google Scholar 

  • Ehrenberg, M. and Rigler, R. (1974). Rotational brownian motion and fluorescence intensity fluctuations. Chem. Phys., 4, 390–401

    Article  CAS  Google Scholar 

  • Elson, E. L. and Magde, D. (1974). Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers, 13, 1–27

    Article  CAS  Google Scholar 

  • Favro, L. D. (1960). Theory of rotational Brownian motion of a free rigid body. Phys. Rev., 119, 53–62

    Article  Google Scholar 

  • Freed, J., Bruno, G. V. and Polnaszek, C. (1971). ESR line shapes for triplets undergoing slow rotational reorientation. J. Chem. Phys., 55, 5270–5281

    Article  CAS  Google Scholar 

  • Goldstein, H. (1950). In Classical Mechanics. Addison-Wesley, Reading, pp. 347–372

    Google Scholar 

  • Goldman, S. A., Bruno, G. V., Polnaszek, C. F. and Freed, J. H. (1972). An ESR study of anisotropic rotational reorientation and slow tumbling in liquid and frozen media. J. Chem. Phys., 56, 716–735

    Article  CAS  Google Scholar 

  • Graceffa, P. and Seidel, J. C. (1980). A reaction involving protein sulfhydryl groups, a bound spin-label, and K3Fe(CN)6 as a probe of sulfhydryl proximity in myosin. Biochemistry, 19, 33–39

    Article  PubMed  CAS  Google Scholar 

  • Griffith, O. H. and Jost, P. C. (1976). Lipid spin labels in biological membranes. In Berliner, L. J. (Ed.), Spin Labeling: Theory and Application. Academic Press, New York, pp. 454–519

    Google Scholar 

  • Hambly, B. D., Franks, K. and Cooke, R. (1988). Probes uniquely attached to light chains of myosin. Biophys. J., 53, 193a

    Article  Google Scholar 

  • Harris, R. A. and Hearst, J. E. (1966). On polymer dynamics. J. Chem. Phys., 44, 2595–2602

    Article  CAS  Google Scholar 

  • Hubbell, W. L. and McConnell, H. M. (1969). Orientation and motion of amphiphilic spin labels in membranes. Proc. Natl Acad. Sci. USA, 64, 20–27

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hudson, E. N. and Weber, G. (1973). Synthesis and characterization of two fluorescent sulfhydryl reagents. Biochemistry, 12, 4154–4161

    Article  PubMed  CAS  Google Scholar 

  • Huxley, A. F. and Simmons, R. M. (1971). Proposed mechanism of force generation in striated muscle. Nature, 233, 533–538

    Article  PubMed  CAS  Google Scholar 

  • Huxley, H. E. (1969). The mechanism of muscle contraction. Science, N. Y., 164, 1356–1366

    Article  CAS  Google Scholar 

  • Huxley, H. E. and Kress, M. (1985). Crossbridge behavior during muscle contraction. J. Muscle Res. Cell Motil., 6, 153–161

    Article  PubMed  CAS  Google Scholar 

  • Ishiwata, S., Kinosita, K., Yoshimura, H. and Ikegami, A. (1987). Rotational motions of myosin heads in myofibrils studied by phosphorescence anisotropy decay measurements. J. Biol. Chem., 262, 8314–8317

    PubMed  CAS  Google Scholar 

  • Kinosita, K., Ishiwata, S., Yoshimura, H., Asai, H. and Ikegami, A. (1984). Submicrosecond and microsecond rotational motions of myosin head in solution and in myosin synthetic filaments as revealed by time-resolved optical anisotropy decay measurements. Biochemistry, 23, 5963–5975

    Article  CAS  Google Scholar 

  • Kinosita, K., Kawato, S. and Ikegami, A. (1977). A theory of fluorescence polarization decay in membranes. Biophys. J., 20, 289–305

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kron, S. J. and Spudich, J. A. (1986). Fluorescent actin filaments move on myosin fixed to a glass surface. Proc. Natl Acad. Sci. USA, 83, 6272–6276

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lakowicz, J. R. (1983). Principles of Fluorescence Spectroscopy. Plenum Press, New York

    Book  Google Scholar 

  • Mendelson, R. A. and Cheung, P. (1976). Muscle cross-bridges: absence of direct effect of calcium on movement away from the thick filament. Science, N. Y., 194, 190–192

    Article  CAS  Google Scholar 

  • Mendelson, R. A., Morales, M. F. and Botts, J. (1973) Segmental flexibility of the S-1 moiety of myosin. Biochemistry, 12, 2250–2255

    Article  PubMed  CAS  Google Scholar 

  • Mendelson, R. A., Putnam, S. and Morales, M. F. (1975). Time-dependent fluorescence depolarization and lifetime studies of myosin subfragment-one in the presence of nucleotide and actin. J. Supramol. Struct., 3, 162–168

    Article  PubMed  CAS  Google Scholar 

  • Nihei, T., Mendelson, R. A. and Botts, J. (1974a). The site of force generation in muscle contraction as deduced from fluorescence polarization studies. Proc. Natl Acad. Sci. USA, 71, 274–277

    Article  CAS  PubMed Central  Google Scholar 

  • Nihei, T., Mendelson, R. A. and Botts, J. (1974b). Use of fluorescence polarization to observe changes in attitude of S1 moieties in muscle fibers. Biophys. J., 14, 236–242

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Oosawa, F. (1980). The flexibility of F-actin. Biophys. Chem., 11, 443–446

    Article  PubMed  CAS  Google Scholar 

  • Polnaszek, C. F. and Freed, J. H. (1975). Electron spin resonance studies of anisotropic ordering, spin relaxation, and slow tumbling in liquid crystalline solvents. J. Chem. Phys., 79, 2283–2306

    Article  CAS  Google Scholar 

  • Prochniewicz-Nakayama, E., Yanagida, T. and Oosawa, F. (1983). Studies on conformation of F-actin in muscle fibers in the relaxed state, rigor, and during contraction using fluorescent phalloidin. J. Cell Biol., 97, 1663–1667

    Article  PubMed  CAS  Google Scholar 

  • Quinlivan, J., McConnell, H. M., Stowring, L., Cooke, R. and Morales, M. F. (1969). Myosin modification as studied by spin labelling. Biochemistry, 8, 3644–3647

    Article  PubMed  CAS  Google Scholar 

  • Reisler, E. (1982). Sulfhydryl modification and labelling of myosin. Methods Enzymol., 85, 84–93

    Article  PubMed  CAS  Google Scholar 

  • Shriver, J. W. and Sykes, B. D. (1981). Phosphorus-31 nuclear magnetic resonance evidence for two conformations of myosin subfragment-1-nucleotide complexes. Biochemistry, 20, 2004–2012

    Article  PubMed  CAS  Google Scholar 

  • Shriver, J. W. and Sykes, B. D. (1982). Energetics of the equilibrium between two nucleotide-free myosin subfragment 1 states using fluorine-19 nuclear magnetic resonance. Biochemistry, 21, 3022–3028

    Article  PubMed  CAS  Google Scholar 

  • Takashi, R. and Putnam, S. (1979). A fluorimetric method for continuously assaying ATPase: Application to small specimens of glycerol-extracted muscle fibers. Anal. Biochem., 92, 375–382

    Article  PubMed  CAS  Google Scholar 

  • Thomas, D. D. and Cooke, R. (1980). Orientation of spin-labeled myosin heads in glycerinated muscle fibers. Biophys. J., 32, 891–906

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Thompson, N. L. (1988). Fluorescence correlation spectroscopy. In Lakowicz, J. R. (Ed.), Fluorescence Spectroscopy: Principles and Applications, Vol. 2. Plenum Press, New York, in press

    Google Scholar 

  • Thompson, N. L. and Burghardt, T. P. (1986). Total internal reflection fluorescence: measurement of spatial and orientation distributions of fluorophores near planar dielectric interfaces. Biophys. Chem., 25, 91–97

    Article  PubMed  CAS  Google Scholar 

  • Thompson, N. L., Burghardt, T. P. and Axelrod, D. (1981). Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery or correlation spectroscopy. Biophys. J., 33, 435–454

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Toyoshima, Y. Y., Kron, S. J., McNally, E. M., Niebling, K. R., Toyoshima, C. and Spudich, J. A. (1987). Myosin subfragment 1 is sufficient to move actin filaments in vitro. Nature, 328, 536–539

    Article  PubMed  CAS  Google Scholar 

  • Tregear, R. T. and Mendelson, R. A. (1975). Polarization from a helix of fluorophores and its relations to that obtained from muscle. Biophys. J., 15, 455–467

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wilson, M. G. A. and Mendelson, R. A. (1983). A comparison of order and orientation of crossbridges in rigor and relaxed muscle fibers using fluorescence polarization. J. Muscle Res. Cell Motil., 4, 671–693

    Article  PubMed  CAS  Google Scholar 

  • Yamada, T., Kirino, Y. and Shimizu, H. (1984). An electron spin resonance study of temperature-induced structural changes of the spin-labeled myosin head: An evidence for two conformational states of myosin head. J. Biochem., 96, 1021–1026

    PubMed  CAS  Google Scholar 

  • Yanagida, T. (1981). Angles of nucleotides bound to cross-bridges in glycerinated muscle fibers at various concentrations of ε-ATP, ε-ADP, and ε-AMPPNP detected by polarized fluorescence. J. Mol. Biol., 146, 539–549

    Article  PubMed  CAS  Google Scholar 

  • Yanagida, T. (1985). Angle of active site of myosin heads in contracting muscle fibers during sudden length changes. J. Muscle Res. Cell Motil., 6, 43–52

    Article  PubMed  CAS  Google Scholar 

  • Yanagida, T., Arata, T. and Oosawa, F. (1985). Sliding distance of actin filament induced by a myosin crossbridge during one ATP hydrolysis cycle. Nature, 316, 366–369

    Article  PubMed  CAS  Google Scholar 

  • Yanagida, T., Nakase, M., Nishiyama, K. and Oosawa, F. (1984). Direct observation of motion of single F-actin filaments in the presence of myosin. Nature, 307, 58–60

    Article  PubMed  CAS  Google Scholar 

  • Yanagida, T. and Oosawa, F. (1978). Polarized fluorescence from ε-ADP incorporated into F-actin in a myosin-free single fiber: conformation of F-actin and changes induced in it by heavy meromyosin. J. Mol. Biol., 126, 507–524

    Article  PubMed  CAS  Google Scholar 

  • Yanagida, T. and Oosawa, F. (1980). Conformational changes of F-actin-ε-ADP in thin filaments in myosin free muscle fibers induced by Ca2+. J. Mol. Biol., 140, 313–320

    Article  PubMed  CAS  Google Scholar 

  • Yates, L., Burghardt, T. P., Borejdo, J. and Gordon, A. (1985). Linear dichroism of rhodamine labeled TnC incorporated into skinned skeletal fibers. Biophys. J., 47, 468a

    Google Scholar 

  • Zannoni, C., Arcioni, A. and Cavatorta, P. (1983). Fluorescence depolarization in liquid crystals and membrane bilayers. Chem. Phys. Lipids, 32, 179–250

    Article  CAS  Google Scholar 

  • Zimm, B. H. (1956). Dynamics of polymer molecules in dilute solution: viscoelastic, flow birefringence and dielectric loss. J. Chem. Phys., 24, 269–278

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1990 The editor and contributors

About this chapter

Cite this chapter

Burghardt, T.P., Ajtai, K. (1990). Crossbridge Movements Monitored by Extrinsic Probes. In: Squire, J.M. (eds) Molecular Mechanisms in Muscular Contraction. Topics in Molecular and Structural Biology. Palgrave, London. https://doi.org/10.1007/978-1-349-09814-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-09814-9_7

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-09816-3

  • Online ISBN: 978-1-349-09814-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics