The Nature of the Actin Molecule

  • Clarence E. Schutt
  • Uno Lindberg
Chapter
Part of the Topics in Molecular and Structural Biology book series (TMSB)

Abstract

The actin molecule is one of nature’s most remarkable objects: its very ubiquity throughout eukaryotic biology and the tenacity of its structure in the face of aeons of evolutionary adaptation bespeak a fundamental functional characteristic that invites our curiosity. Actin stands at the crossroads where eukaryotes first diverged from our unicellular prokaryotic ancestors, a point when cells learned to replicate and package their genomic material and to divide into daughter cells. In the structural timescape, it was time to abandon rigid cell-walls and simple flagellar-based motility, and to invest the cytoplasm with the vast new organising potential afforded by the actin molecule. The essential utility of the actin molecule for the cyto-architect is that it can spontaneously assemble into long flexible filaments, from which bundles, cables and mesh-works can be constructed. Through such extended structures forces can be transmitted, sieves and boundaries assembled, and cell membranes buttressed. Add to this the capacity to alter in a controlled manner the pattern of interconnections and the cell acquires the means to move, change shape and perform mechanical work. It is our view that, once the actin molecule emerged at the dawn of the eukaryotes as a universal mechanochemical coupling unit, its structure remained virtually unaltered throughout evolution. Instead, other actin binding proteins evolved capable of modifying and controlling the behaviour of actin to meet new functional requirements.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barden, J. A. and dos Remedios, G. G. (1984): The environment of the high-affinity cation binding site on actin and the separation between cation and ATP sites as revealed by proton NMR and fluorescence spectroscopy. J. Biochem., Tokyo, 96, 913–921Google Scholar
  2. Botstein, D. (in conversation, 1985)Google Scholar
  3. Chothia, C. (in conversation, 1984)Google Scholar
  4. dos Remedios, C. G., Miki, M. and Barden, J. (1987). Fluorescence resonance energy transfer measurements of distances in actin and myosin. A critical evaluation. J. Muscle Res. Cell Motil., 8, 97–117PubMedCrossRefGoogle Scholar
  5. Egelman, E. (1985). The structure of the actin thin filament (a review). J. Muscle Res. Cell Motil., 6, 129–151PubMedCrossRefGoogle Scholar
  6. Egelman, E. H., Frances, N. and DeRosier, D. J. (1982). F-actin is a helix with a random variable twist. Nature, 298, 131–135PubMedCrossRefGoogle Scholar
  7. Estes, J. E., Seiden, L. A. and Gershman, L. C. (1987). Tight binding of divalent cations to monomeric actin. J. Biol. Chem., 262, 4952–4957.PubMedGoogle Scholar
  8. Frieden, C. (1982). The Mg++-induced conformational change in rabbit skeletal muscle G-actin. J. Biol. Chem., 257, 2882–2886PubMedGoogle Scholar
  9. Gershman, L. C., Seiden, L. A. and Estes, J. E. (1986). High affinity binding of divalent cation to actin monomer is much stronger than previously reported. Biochem. Biophys. Res. Commun., 135, 607–614PubMedCrossRefGoogle Scholar
  10. Hambly, B. D., Barden, J. A., Miki, M. and dos Remedios, C. G. (1986). Structural and functional domains on actin. Bioessays, 4, 124–128PubMedCrossRefGoogle Scholar
  11. Harrison, S. C., Olson, A.J., Schutt, C. E., Winkler, F. K. and Bricogne, G. (1978). Tomato bushy stunt virus at 2.9 angstroms resolution. Nature, 276, 368–373PubMedCrossRefGoogle Scholar
  12. Hiromi, Y. and Hotta, Y. (1987). Actin gene mutations in Drosophila; heat shock activation in the indirect flight muscles. EMBO Jl, 4, 1681–1687Google Scholar
  13. Jacobson, G. and Rosenbusch, J. (1976). ATP binding to a protease-resistant core of actin. Proc. Natl Acad. Sci. USA, 73, 2742–2746PubMedPubMedCentralCrossRefGoogle Scholar
  14. Kabsch, W., Mannherz, H. G. and Suck, D. (1985). Three-dimensional structure of the complex of actin and DNase I at 4.5 Å resolution. EMBO Jl, 4, 2113–2118Google Scholar
  15. Karlik, C. C., Coutu, M. D. and Fyrberg, E. A. (1984). A nonsense mutation within the Act88F actin gene disrupts myofibril formation in Drosophila indirect flight muscles. Cell, 38, 711–719PubMedCrossRefGoogle Scholar
  16. Konno, K. (1988). G-Actin structure revealed by chymotryptic digestion. J. Biochem., 103, 386–392PubMedGoogle Scholar
  17. Korn, E. D. (1982). Actin polymerization and its regulation by proteins from non-muscle cells. Physiol. Rev., 62, 672–725PubMedGoogle Scholar
  18. Korn, E. D., Carlier, M.-F. and Pantaloni, D. (1988). Actin polymerization and ATP hydrolysis. Science, N.Y., 238, 638–644CrossRefGoogle Scholar
  19. Leavitt, J., Bushar, G., Kakunaga, T., Hamada, H., Hirakawa, T., Goldman, D. and Merril, C. (1982). Variations in expression of mutant? actin accompanying incremental increases in human fibroblast tumorigenicity. Cell, 28, 259–268PubMedCrossRefGoogle Scholar
  20. Lindberg, U., Schutt, C. E., Hellsten, E., Tjader, A.-C. and Hult, T. (1988). The use of poly-L-proline sepharose in the isolation of profilin and profilin-actin complexes. Biophys. Biochim. Acta., 967, 391–400CrossRefGoogle Scholar
  21. Martin, Debra J. and Rubenstein, Peter A. (1987). Alternate pathways for removal of the class II actin initiator methionine. J. Biol. Chem., 262, 6350–6356PubMedGoogle Scholar
  22. Miki, M. and Wahl, P. (1985). Fluorescence energy transfer between points in G-actin: the nucleotide-binding site, the metal-binding site and Cys-373 residue. Biochim. Biophys. Acta, 828, 188–195PubMedCrossRefGoogle Scholar
  23. Moir, A. J. G. and Levine, B. A. (1986). Protein cognitive sites on the surface of actin. A proton NMR study. J. Inorg. Biochem., 28, 271–278PubMedCrossRefGoogle Scholar
  24. Mornet, D. and Ue, K. (1984). Proteolysis and structure of skeletal muscle actin. Proc. Natl Acad. Sci. USA, 82, 3680–3684CrossRefGoogle Scholar
  25. Nowak, E., Strzelecka-Golaszewka, H. and Goody, R. (1988). Kinetics of nucleotide and metal ion interaction with G-actin. Biochemistry, 27, 1785–1792PubMedCrossRefGoogle Scholar
  26. Olson, A. J. (1984). Tomato Bushy Stunt Virus (a film), Palmer Film Studios, 1475 Old Country Road, Belmont, CA 94002, USAGoogle Scholar
  27. Oosawa, F. (1983). Macromolecular assembly of actin. In Stracher, A. (Ed.), Muscle and Nonmuscle Motility, Vol. 1. Academic Press, New York, London, pp. 151–211CrossRefGoogle Scholar
  28. Pollard, T. D. (1986). Rate constants for the reactions of ATP- and ADP-actin with the ends of actin filaments. J. Cell Biol., 103, 2747–2754PubMedCrossRefGoogle Scholar
  29. Pollard, T. D. and Cooper, J. A. (1986). Actin and actin-binding proteins: A critical evaluation of mechanisms and functions. Ann. Rev. Biochem., 55, 987–1035PubMedCrossRefGoogle Scholar
  30. Ponder, J. W. and Richards, F. M. (1987). Tertiary templates for proteins: use of packing criteria in the enumeration of allowed sequences for different structural classes. J. Mol. Biol., 193, 775–791PubMedCrossRefGoogle Scholar
  31. Sakabe, N., Sakabe, K., Saski, K., Kondo, H., Ema, T., Kamiya, N. and Matsushima, M. (1983). Structure of actin-DNase I at low resolution. J. Biochem., 93, 299–302PubMedGoogle Scholar
  32. Sarma, R., Ramirez, F., Narayanan, P., McKeever, B. and Marecek, J. F. (1979). Molecular structure of a stable 2,4-dinitrophenoxide complex. A model for histidine and N-τ-methylhistidine coordination in MgATPase and their uncouplers. J. Am. Chem. Soc., 101 (17), 5015–5019CrossRefGoogle Scholar
  33. Schutt, C. (1987). Movement on the Aufbaubahn. Nature, 325, 757–758PubMedCrossRefGoogle Scholar
  34. Schutt, C. E., Strauss, N., Morikawa, K. and Lindberg, U. (1986). Crystallographic studies on the profilin: actin complex. In Yanagida, T. (Ed.), Actin: Structure and Functions. University of Tokyo Press, pp. 10–17Google Scholar
  35. Schutt, C. E., Lindberg, U., Myslik, J. and Strauss, N. (1989). Molecular packing in profilin: actin crystals and its implications, J. Mol. Biol., in pressGoogle Scholar
  36. Sigler, P. (in conversation, 1985)Google Scholar
  37. Solomon, Larry R. and Rubenstein, Peter A. (1987). Studies on the role of actin’s N-τ-methylhistidine using oligodeoxynucleotide-directed site-specific mutagenesis. J. Biol. Chem., 262, 11382–11388PubMedGoogle Scholar
  38. Stock, A., Wylie, D. C., Mottonen, J. M., Lupas, A. N., Ninfa, E. G., Ninfa, A. J., Schutt, C. E. and Stock, J. B. (1988). Phospho-proteins involved in bacterial signal transduction. ColdGoogle Scholar
  39. Spring Harbor Symposium on Quantitative Biology on Sensory Transduction., 53, 49–57Google Scholar
  40. Stossel, T. P., Chaponnier, C., Ezzell, R. M., Hartwig, J. H., Janmey, P. A., Kwiatkowski, D. H., Lind, S. E., Smith, D. B., Southwick, F. S., Yin, H. L. and Zaner, K. S. (1985). Nonmuscle actin-binding proteins. Ann. Rev. Cell Biol., 1, 353–402PubMedCrossRefGoogle Scholar
  41. Suck, D., Kabsch, W. and Mannherz, H. G. (1981). Three-dimensional structure of the complex of skeletal muscle actin and bovine pancreatic DNaseI at 6 Å resolution. Proc. Natl Acad. Sci. USA, 78, 4319–4323PubMedPubMedCentralCrossRefGoogle Scholar
  42. Sussman, D. J., Sellers, J. R., Flicker, P., Laie, E. Y., Cannon, L. E., Szent-Gyorgyi, A. G. and Fulton, C. (1984). Actin of Naegleria gruberi. J. Biol. Chem., 259, 7349–7354PubMedGoogle Scholar
  43. Sutoh, K. (1984). Actin-actin and actin-deoyribonuclease I contact sites in the actin sequence. Biochemistry, 23, 1942–1946PubMedCrossRefGoogle Scholar
  44. Vandekerckove, J., Leavitt, J., Kakunaga, T. and Weber, K. (1980). Coexpression of a mutant γ-actin and two normal β- and γ-cytoplasmic actins in a stably transformed human cell line. Cell, 22, 893–899CrossRefGoogle Scholar
  45. Wang, Y. (1985). Exchange of actin subunits at the leading edge of living fibroblasts: possible role of treadmilling. J. Cell Biol., 101, 597–602PubMedCrossRefGoogle Scholar
  46. Weeds, A. (1982). Actin-binding proteins—regulators of cell architecture and motility. Nature, 296, 811–815PubMedCrossRefGoogle Scholar
  47. Wegner, A. (1976). Head to tail polymerization of actin. J. Mol. Biol., 108, 139–147PubMedCrossRefGoogle Scholar
  48. Zimmerle, C. T., Patane, K. and Frieden, C. (1987). Divalent cation binding to the high- and low-affinity sites on G-actin. Biochemistry, 26, 6542–6552Google Scholar

Copyright information

© The editor and contributors 1990

Authors and Affiliations

  • Clarence E. Schutt
  • Uno Lindberg

There are no affiliations available

Personalised recommendations