Skip to main content

Static and Time-resolved X-ray Diffraction Studies of Fish Muscle

  • Chapter
Molecular Mechanisms in Muscular Contraction

Part of the book series: Topics in Molecular and Structural Biology ((TMSB))

Abstract

X-Ray diffraction studies of muscle continue to play an essential role in muscle research. This is by virtue of the possible application of the technique to live intact muscle preparations which are not far removed from the in vivo state and equally in part due to the intrinsically well-ordered arrangement of the contractile proteins within vertebrate skeletal muscle (see Chapter 1). The application of these techniques to frog sartorius muscle (a) has confirmed that, in live contracting muscle, the muscle filaments do not shorten significantly when whole muscle shortens (Huxley, 1953); (b) has shown that major rearrangement of the myosin crossbridge helix array occurs when muscle is in the active or rigor states (Huxley, 1968; Haselgrove, 1975); and (c) has more recently allowed structural events during force production to be followed with about 1 ms time resolution (Huxley et al., 1980, 1981; Kress et al., 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bordas, J., Koch, M. H. J., Clout, P. N., Dorrington, E., Boulin, C. and Gabriel, A. (1980). A synchrotron radiation camera and data acquisition system for time resolved X-ray scattering studies. J. Phy. E: Sci. Instrum., 13, 938–944

    Article  Google Scholar 

  • Cantino, M. and Squire, J. M. (1986). Resting myosin cross-bridge configuration in frog muscle thick filaments. J. Cell. Biol., 102, 610–618

    Article  PubMed  CAS  Google Scholar 

  • Cobb, J. L. S., Fox, N. C. and Santer, R. M. (1973). A specific Ringer solution for the plaice. J. Fish Biol., 5, 587–591

    Article  CAS  Google Scholar 

  • Curmi, P. M. G., Stone, D. B., Schneider, D. K., Spudich, J. A. and Mendelson, R. A. (1988). Comparison of the structure of myosin subfragment 1 bound to actin and free in solution; a neutron scattering study using actin made ‘invisible’ by deuteration. J. Mol. Biol., 203, 781–798

    Article  PubMed  CAS  Google Scholar 

  • Dorrington, E. (1982). Encodable real time interval counter, Mark II (ERIC 2): A Camac module to control time resolved measurements., Nuc. Instrum. Methods, 201, 247–250

    Article  CAS  Google Scholar 

  • Egelman, E. H., Frances, N. and Derosier, D. J. (1982). F-actin is a helix with a random variable twist. Nature, 298, 131–135

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, M. A., Michael, L. H., Schroeter, J. P. and Saas, R. L. (1986). The Z-band lattice in skeletal muscle before, during and after tetanic contraction. J. Muscle Res. Cell Motil. 7, 527–536

    Article  PubMed  CAS  Google Scholar 

  • Harford, J. J. (1984). Diffraction analysis of vertebrate muscle crossbridge arrangements. PhD Thesis, London University

    Google Scholar 

  • Harford, J. J. and Squire, J. M. (1986). ‘Crystalline’ myosin cross-bridge array in relaxed bony fish muscle. Biophys. J., 50, 145–155

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Harrington, W. F. (1979). Contractile proteins in muscle. In The Proteins, Vol. 4. Academic Press

    Google Scholar 

  • Haselgrove, J. C. (1975). X-ray evidence for conformational changes in the myosin filaments of vertebrate striated muscle. J. Mol. Biol., 92, 113–143

    Article  PubMed  CAS  Google Scholar 

  • Haselgrove, J. C. (1980). A model of myosin crossbridge structure consistent with the low-angle X-ray diffraction pattern of vertebrate muscle. J. Muscle Res. Cell. Motil., 1, 177–191

    Article  PubMed  CAS  Google Scholar 

  • Haselgrove, J. C. and Huxley, H. E. (1973). X-ray evidence for radial cross-bridge movement and for the sliding filament model in actively contracting skeletal muscle. J. Mol. Biol., 77, 549–568

    Article  PubMed  CAS  Google Scholar 

  • Haselgrove, J. C., Stewart, M., and Huxley, H. E. (1976). Cross-bridge movement during muscle contraction, Nature, 261, 600–608

    Article  Google Scholar 

  • Hendrix, J., Fuerst, H., Hartfiel, B. and Dainton, D. (1982). A wire per wire detector system for high counting rate X-ray experiments. Nuc. Instrum. Methods, 201, 139–144

    Article  Google Scholar 

  • Huxley, H. E. (1953). Electron microscope studies of the organisation of the filaments in striated muscle. Biochim. Biophys. Acta, 12, 387–394

    Article  PubMed  CAS  Google Scholar 

  • Huxley, H. E. (1968). Structural difference between resting and rigor muscle; evidence from intensity changes in the low-angle equatorial X-ray diagram. J. Mol. Biol., 37, 507–520

    Article  PubMed  CAS  Google Scholar 

  • Huxley, H. E. and Brown, W. (1967). The low-angle X-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor. J. Mol. Biol., 30, 383–434

    Article  PubMed  CAS  Google Scholar 

  • Huxley, H. E., Faruqi, A. R., Bordas, J., Koch, M. H. J. and Milch, J. R. (1980). The use of synchrotron radiation in time resolved X-ray diffraction studies of myosin layer-line reflections during muscle contraction. Nature (Lond.) 284, 140–143

    Article  CAS  Google Scholar 

  • Huxley, H. E., Simmons, R. M., Faruqi, A. R., Kress, M., Bordas, J. and Koch, M. H. J. (1981). Millisecond time resolved changes in X-ray reflections from contracting muscle during rapid mechanical transients, recorded using synchrotron radiation. Proc. Nat. Acad. Sci. USA., 78, 2297–2301

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kress, M., Huxley, H. E., Faruqi, A. R. and Hendrix, J. (1986). Structural changes during activation of frog muscle studied by time resolved X-ray diffraction. J. Mol. Biol., 188, 325–342

    Article  PubMed  CAS  Google Scholar 

  • Lovell, S. J., Knight, P. J. and Harrington, W. F. (1981). Fraction of myosin heads bound to thin filaments in rigor fibrils from insect flight and vertebrate muscles. Nature, 293, 664–666

    Article  PubMed  CAS  Google Scholar 

  • Luther, P. K., Munro, P. M. G. and Squire, J. M. (1981). Three-dimensional structure of the vertebrate muscle A-band III. M-region structure and myosin filament symmetry. J. Mol. Biol., 151, 703–730.

    Article  PubMed  CAS  Google Scholar 

  • Luther, P. K. and Squire, J. M. (1980). Three-dimensional structure of the vertebrate muscle A-band. II. The myosin filament superlattice. J. Mol. Biol., 141, 409–439

    Article  PubMed  CAS  Google Scholar 

  • Milligan, R. A. and Flicker, P. F. (1987). Structural relationships of actin, myosin, and tropomyosin revealed by cryo-electron microscopy. J. Coll. Biol., 105, 29–39

    Article  CAS  Google Scholar 

  • Pask, H. and Morris, E. (1988). Personal communication

    Google Scholar 

  • Pepe, F. A. (1971). Structure of the myosin filament of striated muscle. In Butler, J. A. V. and Noble, D. (Eds.), Progress in Biophysics and Molecular Biology, Vol. 22. Pergamon Press, New York, pp. 77–96

    Google Scholar 

  • Reedy, M. K., Leonard, K. R., Freeman, R. and Arad, T. (1981). Thick myofilament mass determination by electron scattering measurements with the scanning transmission electron microscope. J. Muscle Res. Cell Motil., 2, 45–64

    Article  PubMed  CAS  Google Scholar 

  • Rome, E., Hirabayashi, T. and Perry, S. V. (1973b). X-ray diffraction of muscle labelled with antibody to troponin-C. Nature New Biol., 244, No. 135, 154–155

    Article  PubMed  CAS  Google Scholar 

  • Rome, E., Offer, G. and Pepe, F. A. (1973a). X-ray diffraction of muscle labelled with antibody to C-protein. Nature New Biol., 244, No. 135, 152–154

    Article  PubMed  CAS  Google Scholar 

  • Squire, J. M. (1975). Muscle filament structure and muscle contraction. Ann. Rev. Biophys. Bioeng., 4, 137–163

    Article  CAS  Google Scholar 

  • Squire, J. M. (1981). The Structural Basis of Muscular Contraction. Plenum Press, New York

    Book  Google Scholar 

  • Squire, J. M. and Harford, J. J. (1988). Actin filament organization and myosin head labelling patterns in vertebrate skeletal muscles in the rigor and weak binding states. J. Muscle Res. Cell Motil., 9, 344–358

    Article  PubMed  CAS  Google Scholar 

  • Squire, J. M., Harford, J. J., Edman, A.-C. and Sjostrom, M. (1982). Fine structure of the A-band in cryo-sections. III. Crossbridge distribution and the axial structure of the human C-zone. J. Mol. Biol., 155, 467–494

    Article  PubMed  CAS  Google Scholar 

  • Tregear, R. T. and Squire, J. M. (1973). Myosin content and filament structure in smooth and striated muscle. J. Mol. Biol., 77, 279–290

    Article  PubMed  CAS  Google Scholar 

  • Yagi, N., Ito, M. H. Nakajima, H., Izumi, T. and Matsubara, I. (1977). Return of myosin heads to thick filaments after muscle contraction. Science, N. Y., 197, 685–687

    Article  CAS  Google Scholar 

  • Yu, L. C., Lymn, R. W. and Podolsky, R. J. (1977). Characterisation of a non-indexible equatorial X-ray reflection from frog sartorius muscle. J. Mol. Biol., 115, 455–464

    Article  PubMed  CAS  Google Scholar 

  • Yu, L. C., Steven, A. C., Naylor, G. R. S., Gamble, R. C. and Podolsky, R. J. (1985). Distribution of mass in relaxed frog skeletal muscle and its redistribution upon activation. Biophys. J., 47, 311–321

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1990 The editor and contributors

About this chapter

Cite this chapter

Harford, J., Squire, J.M. (1990). Static and Time-resolved X-ray Diffraction Studies of Fish Muscle. In: Squire, J.M. (eds) Molecular Mechanisms in Muscular Contraction. Topics in Molecular and Structural Biology. Palgrave, London. https://doi.org/10.1007/978-1-349-09814-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-09814-9_10

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-09816-3

  • Online ISBN: 978-1-349-09814-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics