Advertisement

Cloning and Sequencing of Murine Lupus-Associated Autoantibody Genes

  • G. Kroemer
  • R. Strohal
  • R. Faessler
  • G. Wick
  • D. J. Noonan
  • F. J. Dixon
  • A. N. Theofilopoulos
  • R. Kofler
Chapter
Part of the Keynes Seminars book series (KESE)

Abstract

Immunoglobulin (Ig) heavy (H) and light (L) chain variable (V) region genes are assembled somatically during B-cell differentiation by stage-specific DNA rearrangements of multiple V, diversity (D, H chains only), and joining (J) germline gene segments (reviewed by Alt et al, 1986). Different combinations and imprecise joining of V, D and J elements, random insertion of nucleotides during the joining process (N regions), as well as somatic mutation, contribute to the generation of antibody diversity and ultimately determine the specificity (self or non-self antigen) of a given antibody. Murine lupus is characterised by high titres of circulating autoantibodies (AAb) leading to immune complex mediated lesions (Theofilopoulos and Dixon, 1985). We have previously shown, by means of restriction fragment length polymorphism analysis, that lupus mice and non-lupus mice of the same haplotypes share highly conserved H chain variable region loci (Kofler et al., 1985b). In the present study, we report a detailed analysis of nucleotide sequences corresponding to H and L chains of nine monoclonal AAb with different specificities frequently expressed during lupus disease (single stranded DNA, histone and various Ig isotypes). The following questions were addressed:

Arc there any primary structures common to ail AAb regardless of their specificity, which might signal their autoreactive nature?

Do AAb employ Ig genes in a restricted manner and are there unique Ig genes different from the germline pool used in the response to exogenous antigens?

To what extent is self-specificity germline encoded or acquired during B-cell development?

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alt, F. W., Blackwell, T. K., DePinho, R. A., Reth, M. G. and Yancopoulos, G. D. (1986). Regulation of the genome rearrangement events during lymphocyte differentiation. Immun. Rev., 89, 5–30.CrossRefGoogle Scholar
  2. Brodeur, P. H. and Riblet, R. (1984). The immunoglobulin heavy chain variable region (Igh-V) locus in the mouse I. One hundred Igh-V genes comprise seven families of homologous genes. Eur. J. Immun., 14, 922–930.CrossRefGoogle Scholar
  3. Kofler, R., Noonan, D. L., Levy, D. E., Wilson, M. C., Moller, N. P. H., Dixon, F. J. and Theofilopoulos, A. N. (1985a). Genetic elements used for a murine lupus anti DNA autoantibody are closely related to those for antibodies to exogenous antigens. J. expl. Med., 161, 805–815.Google Scholar
  4. Kofler, R., Perlmutter, R. M., Noonan, D. J., Dixon, F. J. and Theofilopoulos, A. N. (1985b). Ig heavy chain variable region gene complex of lupus mice exhibits normal restriction fragment length polymorphism. J. expl. Med., 162, 346–351.Google Scholar
  5. Kofler, R., Noonan, D. J., Strohal, R., Balders, R. S., Möller, N. P. H., Dixon, F. J. and Theofilopoulos, A. N. (1986). Molecular analysis of the murine lupus-associated anti-self response: involvement of a large number of heavy and light chain variable region genes. Eur. J. Immun., 17, 91–95.CrossRefGoogle Scholar
  6. Loh, D. Y., Bothwell, A. L. M., White-Scharf, M. E., Imanishi-Kari, T. and Baltimore, D. (1983). Molecular basis of a mouse strain-specific anti-hapten response. Cell, 33, 85–93.CrossRefGoogle Scholar
  7. Maniatis, T., Fritsch, E. F. and Sambrook, J. (1983). Molecular Cloning, Cold Spring Harbor Laboratories, Cold Spring Harbor, New York, pp. 309–362.Google Scholar
  8. Maxam, A. M. and Gilbert, W. (1977). A new method for sequencing DNA. Proc. natn. Acad. Sci. US, 74, 560–564.CrossRefGoogle Scholar
  9. Moynet, D., MacLean, S. J., Ng, K. H., Anctil, D. and Gibson, D. M. (1985). Polymorphism of kappa variable region (V kappa 1) genes in inbred mice; relationship to the Ig kappa Ef2 serum light chain marker. J. Immun., 135, 727–732.Google Scholar
  10. Okayama, H. and Berg, P. (1983). A cDNA cloning vector that permits expression of cDNA inserts in mammalian cells. Mol. Cell. Biol., 3, 280–289.CrossRefGoogle Scholar
  11. Potter, M., Newell, J. B., Rudikoff, S. and Haber, E. (1982). Classification of mouse Vk groups based on the partial amino acid sequence to the first invariant tryptophan: impact of 14 new sequences from IgG myeloma proteins. Mol. Immun., 19, 1619–1629.CrossRefGoogle Scholar
  12. Schiff, C., Corbet, S., Milili, M. and Fougereau, M. (1983). Interstrain conservation of the murine GAT specific antibody Vk repertoire at the germline gene level. EMBO (Eur. Mol. Biochem. Org.) J., 2, 1771–1776.Google Scholar
  13. Theofilopoulos, A. N. and Dixon, F. J. (1985). Murine models of systemic lupus erythematosus. Adv. Immun., 37, 269–300.CrossRefGoogle Scholar
  14. Theofilopoulos, A. N., Balderas, R. S., Hang, L. M. and Dixon, F. J. (1983). Monoclonal IgM rheumatoid factors derived from arthritic MRL/Mp-lpr/lpr mice. J. expl. Med., 158, 901–912.CrossRefGoogle Scholar

Copyright information

© Bioengineering Unit, University of Strathclyde 1988

Authors and Affiliations

  • G. Kroemer
  • R. Strohal
  • R. Faessler
  • G. Wick
  • D. J. Noonan
  • F. J. Dixon
  • A. N. Theofilopoulos
  • R. Kofler

There are no affiliations available

Personalised recommendations