Advertisement

Contributions from Peripheral Autonomic Pharmacology to an Understanding of Antidepressant Drug Action

  • J. P. M. Finberg
  • D. Hovevy-Sion
  • I. J. Kopin
Chapter

Abstract

Antidepressant effects in man can be produced by drugs which inhibit noradrena-line or serotonin (5-HT) uptake or deamination,aswell as drugs such as iprindole, which are not known to directly affect noradrenergic or serotonergic neurons. The clinical effectiveness of agents such as maprotiline and nisoxetine (Iversen and Mackay, 1979), which selectively inhibit neuronal uptake of noradrenaline, points to the importance of the noradrenergic neurons in antidepressant action. Surprisingly, despite the wealth of information on catecholamine receptors and metabolites following administration of antidepressant drugs in man and laboratory animals, there remains much controversy over the basic effect of these drugs on catecholamine release. This is largely because of the difficulty of determining catecholamine turnover in the presence of drugs such as monoamine oxidase (MAO) inhibitors or tricyclic compounds which markedly alter catecholamine metabolism and overflow.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bayorh, M.A., Zukowska-Grojec, Z., and Kopin, I.J. (1983). Effect of desipramine and cocaine on plasma norepinephrine and pressor responses to adrenergic stimulation in pithed rats. J. Clin. Pharmacol, 23, 24–31.CrossRefPubMedGoogle Scholar
  2. Berger, P.A. (1977). Antidepressant medications and the treatment of depressions. In Barchas, J.D., Berger, P.A., Ciaranello, R.D., and Elliot, G.R. (eds.), Psychopharma-cology. Oxford University Press, New York, 174–207.Google Scholar
  3. Bevan, J.A., Tayo, F.M., Rowan, R.A., and Bevan, R.D. (1984). Presynaptic α-receptor control of adrenergic transmitter release in blood vessels. Fed. Proc, 43, 1365–1370.PubMedGoogle Scholar
  4. Brown, J., Doxey, J.C., and Handley, S. (1980). Effects of a-adrenoceptor agonists and antagonists and of antidepressant drugs on pre-and post-synaptic α-adrenoceptors. Eur. J. Pharmacol, 67, 44–40.CrossRefGoogle Scholar
  5. Caramona, M.M., Araujo, D., and Brandao, F. (1985). Influence of MAO A and MAO B on the inactivation of noradrenaline in the saphenous vein of the dog. Naunyn-Schmiede-berg’s Arch. Pharmacol, 328, 401–6.CrossRefGoogle Scholar
  6. Cohen, R.M., Campbell, I.C., Cohen, M.R., Torda, T., Picker, D., Siever, L.J., and Murphy, D.L. (1980). Presynaptic noradrenergic regulation during depression and antidepressant drug treatment. J. Psychiat. Res., 3, 93–105.CrossRefGoogle Scholar
  7. Davey, M.J., Farmer, J.B., and Reinert, H. (1963). The effects of nialamide on adrenergic functions. Br. J. Pharmacol, 20, 121–34.Google Scholar
  8. Doxey, J.C., Roach, A.G., and Samuel, J. (1985). Effects of desipramine on stimulation-induced contractions of the vas deferens of rats pretreated either chronically with desipramine or acutely with idazoxan. Clin. Sci., 68 (Suppl. 10), 155–9S.Google Scholar
  9. Enero, M.A. (1984). Influence of neuronal uptake on the presynaptic α-adrenergic modulation of noradrenaline release. Naunyn-Schmiedeberg’s Arch. Pharmacol., 328, 38–40.CrossRefGoogle Scholar
  10. Finberg, J.P.M., and Kopin, I.J. (1986). Chronic clorgyline treatment enhances release of norepinephrine following sympathetic stimulation in the rat. Naunyn-Schmiedeberg’s Arch. Pharmacol., 332, 236–42.CrossRefGoogle Scholar
  11. Finberg, J.P.M., and Kopin, I.J. (1987). Chronic clonidine treatment produces desensitisa-tion of post-but not pre-synaptic α2-adrenoceptors. Eur. J. Pharmacol, (in press).Google Scholar
  12. Finberg, J.P.M., and Tal, A. (1985). Reduced peripheral presynaptic adrenoceptor sensitivity following chronic antidepressant therapy. Br. J. Pharmacol., 89, 609–17.CrossRefGoogle Scholar
  13. Fishman, P.H., and Finberg, J.P.M. (1987). Effect of the tricyclic antidepressant desi-pramine on β-adrenergic receptors in cultured rat glioma C6 cells. J. Neurochem. (in press).Google Scholar
  14. Graefe, K.H., Stefano, F.J.E., and Langer, S.Z. (1973). Preferential metabolism of (–)3 H-noradrenaline through the deaminated glycol in the rat vas deferens. Biochem. Pharmacol., 22, 1147–60.CrossRefGoogle Scholar
  15. Green, A.R., and Nutt, D.J. (1985). Antidepressants. In Grahame-Smith, D.G., and Cowen, P.J. (eds.), Psychopharmacology 2–Part 1: Preclinical Psychopharmacology, Elsevier, Amsterdam, 1–34.Google Scholar
  16. Hovevey-Sion, D. (1986). Effect of acute and chronic treatment with antidepressants on presynaptic alpha2 adrenoceptors and [3H]-noradrenaline release from sympathetic neurons. Ph.D. thesis, Technion, Haifa, Israel.Google Scholar
  17. Hume, W.R., and Bevan, J.A. (1984). The structure of the peripheral adrenergic synapse and its functional implications. In Ziegler, M.G., and Lake, C.R. (eds.), Norpinephrine. Williams and Wilkins, Baltimore, 47–54.Google Scholar
  18. Iversen, L.L., and Mackey, A.V.P. (1979). Pharmacodynamics of antidepressants and anti-manic drugs. In Paykel, E.S., and Coppen, A. (eds.), Psychopharmacology of Affective Disorders, Oxford University Press, Oxford. 60–75.Google Scholar
  19. Kopin, I.J., Lake, R.C., and Ziegler, M. (1978). Plasma levels of norepinephrine. Annals Int. Med., 88, 671–80.CrossRefGoogle Scholar
  20. Lotti, V.J., Chang, R S. L., and Kling, P. (1981). Pre-and postsynaptic adrenergic activation by norepinephrine reuptake inhibitors in the field-stimulated rat vas deferens. Life Sci., 29, 633–9.CrossRefPubMedGoogle Scholar
  21. Marshall, I., Nasmyth, P.A., and Shepperson, N.B. (1977). Presynaptic α-adrenoceptors and the inhibition by uptake blocking agents of the twitch response of the mouse vas deferens. Br. J. Pharmacol., 59, 511.CrossRefGoogle Scholar
  22. McDaniel, K.D. (1986). Clinical pharmacology of monoamine oxidase inhibitors. Clin. Neuropharmacol., 9, 207–34.CrossRefPubMedGoogle Scholar
  23. McGrath, J.C. (1978). Adrenergic and ‘non-adrenergic’ components in the contractile response of the vas deferens to a single indirect stimulus. J. Physiol, 283, 23–39.CrossRefPubMedPubMedCentralGoogle Scholar
  24. McMillen, B.A., Warnack, W., German, D.C., and Shore, P.A. (1980). Effects of chronic desipramine treatment on rat brain noradrenergic responses to a-adrenergic drugs. Eur. J.Pharmacol., 61, 239–46.CrossRefPubMedGoogle Scholar
  25. Moret, C., Charveron, M., Finberg, J.P.M., Couzinier, J.P., and Briley, M. (1985). Biochemical profile of midalcipran (F2207), l-phenyl-l-diethyl-aminocarbonyl-2-amino-methyl-cyclopropane (Z) hydrochloride, a potential fourth generation antidepressant drug. Neuropharmacol., 24, 1211–19.CrossRefGoogle Scholar
  26. Pelayo, F., Dubocovich, M.L., and Langer, S.Z. (1980). Inhibition of neuronal uptake reduces the presynaptic effects of clonidine but not of a-methylnoradrenaline on the stimulation-evoked release of 3H-noradrenaline from rat occipital cortex slices. Eur. J. Pharmacol, 64, 143–55.CrossRefPubMedGoogle Scholar
  27. Racagni, G., Mocchetti, I., Calderini, G., Battistella, A., and Brunello, N. (1983). Temporal sequence of changes in central noradrenergic system of rat after prolonged antidepressant treatment: receptor desensitization and neurotransmitter interactions. Neuropharmacol., 22, 415–24.CrossRefGoogle Scholar
  28. Reichenbacher, D., Reimann, W., and Starke, K. (1982). α-Adrenoceptor-mediated inhibition of noradrenaline release in rabbit brain cortex slices. Naunyn-Schmiedeberg’s Arch. Pharmacol, 319, 71–7.CrossRefGoogle Scholar
  29. Schildkraut, J.J., Roffman, M., Orsulak, P.J., Schatzberg, A.F., Kling, M.A., and Reigle, T.G. (1976). Effects of short-and long-term administration of tricyclic antidepressants and lithium on norepinephrine turnover in brain. Pharmakopsych., 9, 193–202.CrossRefGoogle Scholar
  30. Stefano, F.J.E., and Trendelenburg, U. (1984). Saturation of monoamine oxidase by intra-neuronal noradrenaline accumulation. Naunyn-Schmiedeberg’s Arch. Pharmacol., 328, 135–41.CrossRefGoogle Scholar
  31. Svensson, T.H., and Usdin, T. (1978). Feedback inhibition of brain noradrenaline neurons by tricyclic antidepressants: alpha-receptor mediation. Science, 202, 1098–91.CrossRefGoogle Scholar
  32. Verbeuren, T.J., and Vanhoutte, P.M. (1982). Deamination of released 3H-noradrenaline in the canine saphenous vein. Naunyn-Schmiedeberg’s Arch. Pharmacol., 318, 148–157.CrossRefGoogle Scholar
  33. Yamaguchi, I., and Kopin, I.J. (1979). Plasma catecholamine and blood pressure responses to sympathetic stimulation in pithed rats. Am. J. Physiol., 237, H305–H310.Google Scholar
  34. Zukowska-Grojec, Z., Bayorh, M.A., and Kopin, I.J. (1983). Effect of desipramine on the effects of α-adrenoceptor inhibitors on pressor responses and release of norepinephrine into plasma of pithed rats. J. Cardiovasc. Pharmacol, 5, 297–301.CrossRefPubMedGoogle Scholar

Copyright information

© The Editors and the Contributors 1988

Authors and Affiliations

  • J. P. M. Finberg
  • D. Hovevy-Sion
  • I. J. Kopin

There are no affiliations available

Personalised recommendations