Dopamine and Hypertension

  • Manabu Yoshimura
  • Hakuo Takahashi
Chapter
Part of the Satellite Symposia of the IUPHAR 10th International Congress of Pharmacology book series

Abstract

DA may be an important factor in regulating blood pressure through central and/or peripheral dopaminergic mechanisms. Decreased central dopaminergic activity was postulated by Stumpe et al. (1977), who suggested that hypertensive patients exhibit an enhanced release of prolactin. A depressor response to an intracerebroventicular injection of DA was by Kondo et al. (1981). In contrast, Kawabe et al. (1986) have suggested that the central dopaminergic mechanisms in cardiovascular regulation are negligible, with the evidence that intracerebroventricular injections of DA or a DA antagonist, metoclopramide, have no effect on the regulation of blood pressure. Therefore, the role of central dopaminergic mechanisms in blood pressure regulation is, at present, unclear.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Castellano, M., Beschi, M., Agabiti-Rossi, E., Muiesan, M. L., Romanelli, G., Falo, F., Malerba, M. and Muiesan, G. (1986). Renal noradrenergic and dopaminergic activity in patients with borderline essential hypertension. J. Cardiovasc. Pharmac., 8, (Suppl. 5), S116–S118CrossRefGoogle Scholar
  2. Cuche, J. L., Kuchel, O., Barbeau, A., Boucher, R. and Genest, J. (1972). Relationship between the adrenergic nervous system and renin during adaptation to upright posture: a possible role for 3,4-dihydroxyphenethylamine (dopamine). Clin. Sci., 43, 481–491PubMedCrossRefGoogle Scholar
  3. Felder, R. A., Blecher, M., Eisner, G. M. and Jose, P. A. (1984). Cortical tubular and glomerular dopamine receptors in the rat kidney. Am. J. Physiol., 246, F557–F568Google Scholar
  4. Fujita, T., Henry, W. L., Bartter, F. C., Lake, C. R. and Delea, C. S. (1980). Factors influencing blood pressure in salt-sensitive patients with hypertension. Am. J. Med., 69, 334–344PubMedCrossRefGoogle Scholar
  5. Fukuyama, M., Yoneda, S., Suzuka, T., Tomioka, T., Kambara, S., Lee, L. C., Takeda, K., Takahashi, H., Yoshimura, M., Nakagawa, M. and Ijichi, H. (1986). The role of endogenous plasma dopamine in phaeochromocytoma. Jiritsu Shinkei, 23, 223–228Google Scholar
  6. Goldberg, L. I. (1984). Dopamine receptors and hypertension, physiological and pharmacologic implications. Am. J. Med., 77, 37–44PubMedCrossRefGoogle Scholar
  7. Harvey, J. N., Casson, I. F., Clayden, A. D., Cope, G. F., Perkins, C. M. and Lee, M. R. (1984). A paradoxical fall in urine dopamine output when patients with essential hypertension are given added dietary salt. Clin. Sci., 67, 83–88PubMedCrossRefGoogle Scholar
  8. Iimura, O., Kikuchi, K., Takigami, Y., Mito, T., Tsuzuki, M. and Shibata, S. (1983). Enhanced natriuretic response to dopamine infusion in low renin essential hypertension. N.Z. Med. J., 96, 860–863Google Scholar
  9. Kambara, S., Yoshimura, M., Okabayashi, H., Takahashi, H. and Ijichi, H. (1986). Attenuated development of hypertension by chronic administration of bromocriptine in DOCA-salt hypertensive rats. Jap. Circulation J., 50, 1120–1127CrossRefGoogle Scholar
  10. Kambara, S., Yoshimura, M., Yamazaki, H., Okabayashi, H., Takahashi, H. and Ijichi, H. (1987a). Enhanced dopamine synthesis in kidney in SHR. Jap. Heart J., 28, 594CrossRefGoogle Scholar
  11. Kambara, S., Yoshimura, M., Yoneda, S., Yamazaki, H., Okabayashi, H., Takeda, K., Takahashi, H. and Ijichi, H. (1987b). The source and significance of increased urinary dopamine excretion during sodium loading in rats. Folia Endocrin. Japon., 63, 657–663CrossRefGoogle Scholar
  12. Kawabe, H., Brosnihan, K. B., Diz, D. I. and Ferrario, C. M. (1986). Role of brain dopamine in centrally evoked angiotensin II receptors in conscious rats. Hypertension, 8, Suppl 1, I-84–I-89Google Scholar
  13. Kawasaki, T., Delea, C. S., Bartter, F. C. and Smith, H. (1978). The effect of high-sodium and low-sodium intakes on blood pressure and other related variables in human subjects with idiopathic hypertension. Am. J. Med., 64, 193–198PubMedCrossRefGoogle Scholar
  14. Kikuchi, K., Miyama, A., Nakao, T., Takigami, Y., Kondo, A., Mito, T., Ura, N., Tsuzuki, M. and Iimura, O. (1982). Hemodynamic and natriuretic responses to intravenous infusion of dopamine in patients with essential hypertension. Jap. Circulation J., 46, 486–493CrossRefGoogle Scholar
  15. Kondo, K., Ebihara, A., Suzuki, H. and Saruta, T. (1981). Role of dopamine in the regulation of blood pressure and the renin-angiotensin-aldosterone system in conscious rats. Clin. Sci., 61, 235S–237SCrossRefGoogle Scholar
  16. Kuchel, O., Buu, N. T., Unger, T., Lis, M. and Genest, J. (1979). Free and conjugated plasma and urinary dopamine in human hypertension. J. Clin. Endocrin. Metab., 48, 425–429CrossRefGoogle Scholar
  17. Lee, L. C., Sasaki, S., Fukuyama, M., Nakamura, Y., Okabayashi, H., Kambara, S., Iyota, I., Okajima, H., Takahashi, H., Takeda, K., Yoshimura, M., Nakagawa, M. and Ijichi, H. (1986). Salt elevates blood pressure with biphasic changes in hypothalamic responsiveness. Jap. Circulation J., 50, 1137–1139Google Scholar
  18. Lee, M. R. (1982). Dopamine and the kidney. Clin. Sci., 62, 439–448PubMedCrossRefGoogle Scholar
  19. Lokhandwala, M. F. and Jandhyala, B. S. (1979). The role of sympathetic nervous system in the vascular actions of dopamine. J. Pharmac. Exp. Ther., 210, 120–126Google Scholar
  20. Luft, F. C., Grim, C. E., Fineberg, N. S. and Weinberger, M. H. (1979). Effects of volume expansion and contraction in normotensive whites, blacks and subjects of different ages. Circulation, 59, 643–650PubMedCrossRefGoogle Scholar
  21. Racz, K., Kuchel, O., Buu, N. T. and Tenneson, S. (1986). Peripheral dopamine synthesis and metabolism in spontaneously hypertensive rats. Circulation Res., 58, 889–897Google Scholar
  22. Resnick, L. M., Nicholson, J. P. and Laragh, J. H. (1986). Calcium metabolism in essential hypertension: relationship to altered renin system activity. Fed. Proc., 45, 2739–2745PubMedGoogle Scholar
  23. Saito, I., Takeshita, E., Saruta, T., Nagano, S. and Sekihara, T. (1986). Urinary dopamine excretion in normotensive subjects with or without family history of hypertension. J. Hypertension, 4, 57–60CrossRefGoogle Scholar
  24. Shigetomi, S., Ueno, S., Kohno, H., Tosaki, H., Suenaga, K., Hashimoto, S. and Fukuchi, S. (1986). Role of renal dopamine receptor in the pathogenesis of hypertension after sodium loading. Folia Endocrin. Japon., 62, 26–33CrossRefGoogle Scholar
  25. Shikuma, R., Yoshimura, M., Ashizawa, H., Kajita, Y., Takahashi, H., Takeda, K. and Ijichi, H. (1982). Enhanced vascular reactivity to norepinephrine in salt-sensitive patients with hypertension. Jap. Heart J., 23, 861–869PubMedCrossRefGoogle Scholar
  26. Shikuma, R., Yoshimura, M., Kambara, S., Yamazaki, H., Takashina, R., Takahashi, H., Takeda, K. and Ijichi, H. (1986). Dopaminergic modulation of salt sensitivity in patients with essential hypertension. Life Sci., 38, 915–921PubMedCrossRefGoogle Scholar
  27. Shikuma, R., Yoshimura, M., Takashina, R., Yamazaki, H., Kambara, S. and Ijichi, H. (1984). The effect of dopaminergic antagonists on plasma aldosterone in normal subjects and patients with hypopituitarism. Folia Endocrin. Japon., 60, 1041–1045CrossRefGoogle Scholar
  28. Sowers, J. R., Golub, M. S., Berger, M. E. and Whitfield, L. A. (1982). Dopaminergic modulation of pressor and hormonal responses in essential hypertension. Hypertension, 4, 424–430PubMedCrossRefGoogle Scholar
  29. Stumpe, K. O., Kolloch, R., Higuchi, M. and Kruck, F. (1977). Hyperprolactinemia and antihypertensive effect of bromocriptine in essential hypertension. Lancet, ii, 211–214CrossRefGoogle Scholar
  30. Takahashi, M., Miura, Y., Sano, N., Kimura, S., Toriyabe, S., Ishizuka, Y., Ohashi, H., Noshiro, T., Sugawara, T., Watanabe, H. and Yoshinaga, K. (1986). Plasma dopamine concentrations in various types of hypertension. Folia Endocrin. Japon., 62, 713–723CrossRefGoogle Scholar
  31. Tsuda, K., Kuchii, M., Nishio, I. and Masuyama, Y. (1986). Effects of epinephrine and dopamine on norepinephrine release from the sympathetic nerve endings in hypertension. J. Hypertension, 4, (Suppl. 5), S45–S48Google Scholar
  32. Worth, D. P., Harvey, J. N., Brown, J. and Lee, M. R. (1985). Patients with essential hypertension have an exaggerated natriuretic response to the dopamine pro-drug γ-glutamyl-dopa. J. Hypertension, 3 (Suppl3), S179–S181Google Scholar
  33. Yoshimura, M., Kambara, S., Okabayashi, H., Ikegaki, I., Matsuzawa, M., Suga, K., Takahashi, H. and Ijichi, H. (1987a). Pathophysiological role of dopamine on the development of hypertension in rats. Jap. Circulation J., 51, 2226–2231Google Scholar
  34. Yoshimura, M., Kambara, S., Okabayashi, H., Takahashi, H. and Ijichi, H. (1987b). Effect of decreased dopamine synthesis on the development of hypertension induced by salt loading in spontaneously hypertensive rats. Clin. Exp. Hypert., A9, 1141–1157Google Scholar
  35. Yoshimura, M., Kambara, S., Takahashi, H., Okabayashi, H., Takeda, K. and Ijichi, H. (1987c). Involvement of dopamine in development of hypertension in spontaneously hypertensive rat: effect of carbidopa, inhibitor of peripheral dopa decarboxylase, Clin. Exp. Hypertens., A9, 1585–1599Google Scholar
  36. Yoshimura, M., Yamazaki, H., Takashina, R., Kambara, S., Iyoda, I., Sasaki, S., Takahashi, H., Takeda, K. and Ijichi, H. (1986). The significance of duration of salt loading on cardiovascular response and urinary excretion of catecholamine in rats. Endocrin. Japon., 33, 169–175CrossRefGoogle Scholar

Copyright information

© Manabu Yoshimura and Hakuo Takahashi 1988

Authors and Affiliations

  • Manabu Yoshimura
  • Hakuo Takahashi

There are no affiliations available

Personalised recommendations