Skip to main content

Interaction of Posture and Locomotion and Initiation of Locomotion in Decerebrate Cats and Freely Moving Intact Cats

  • Chapter
Neurobiology of Vertebrate Locomotion

Part of the book series: Wenner-Gren Center International Symposium Series ((WGS))

Abstract

Standing is an active motor behavior (Gurfinkel and Shik, 1973). A smooth transition from and to standing is necessary to initiate and terminate locomotor movements. Such transitions occur via volitional control of posture and locomotion. During locomotion, an animal continuously controls speed and direction, is able to circumvent all obstacles and anticipate necessary conditions, and deals with unexpected perturbations by means of reflex adaptation (Grillner, 1981). Sherrington (1910) formulated this problem as “posture follows movement like a shadow”. Relatively little Information has been available concerning the interactions between posture and locomotion, however. In our studies in decerebrate cats (Mori et al., 1977; 1978; 1983) and in freely moving, intact cats (Mori et al., in press a, b), we can terminate and evoke locomotor movements by stimulating the dorsal and the ventral parts of the pons along the midline. The locomotor movements evoked in the intact cats were always accompanied by adequate postural adjustments and by behavioral changes. These experiments provide and opportunity to study the neuronal structures subserving the interactions of posture and locomotion and the initiation of locomotor movements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angyan, L., Lenard, L. and Lissak, K. (1973). Control of motor activity at the thalamic level of the cat. In Motor Control, (ed. A.A. Gydikov, N.T. Tankov, and D.S. Kosarov). pp. 139–145, Plenum Press, New York.

    Chapter  Google Scholar 

  • Armstrong, D.M. and Drew, T. (1984). Discharges of pyramidal tract and other motor cortical neurones during locomotion in the cat. J. Physiol.. 346, 471–495.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berman, A.L. (1960). The Brain Stem of the Cat: A Cytoarchitectonic Atlas with Stereotaxic Coordinates. Univ. of Wisconsin Press, Madison.

    Google Scholar 

  • Garcia-Rill, E., Skinner, R.D., Jackson, M.B. and Smith, M.M. (1983). Connections of the mesencephalic locomotor region (MLR) I. Substantia nigra afferents. Brain Res. Bulletin, 10, 57–62,

    Article  CAS  Google Scholar 

  • Garcia-Rill, E., Skinner, R.D. and Gilmore, S.A. (1981). Pallidal projections to the mesencephalic locomotor region (MLR) in the cat. Amer. J. Anat., 161, 311–321.

    Article  CAS  PubMed  Google Scholar 

  • Grillner, S. (1973). Locomotion in the spinal cat. In Control of Posture and Locomotion, (ed. R.B. Stein, R.S. Smith and J.B. Redford). pp. 515–535, Plenum Press, New York.

    Chapter  Google Scholar 

  • Grillner, S. (1975). Locomotion in vertebrates-central mechanisms and reflex interaction. Physiol. Rev., 55, 274–304.

    Google Scholar 

  • Grillner, S. (1981). Control of locomotion in bipeds, tetrapods and fish. In The Nervous System. Vol. 2. (ed. J.M. Brookhart, V.B. Mountcastle and V.B. Brooks), pp. 1179–1236, Amer. Physiol. Soc, Bethesda, Maryland.

    Google Scholar 

  • Grossman, R.G. (1958). Effects of stimulation of nonspecific thalamic system on locomotor movements in cat. J. Neurophysiol. , 21, 85–93.

    CAS  PubMed  Google Scholar 

  • Gurfinkel, V.S. and Shik, M.L. (1973). The control of posture and locomotion. In Motor Control, (ed. A.A. Gydikov, N.T. Tankov, and D.S. Kosarov). pp. 217–234, Plenum Press, New York.

    Chapter  Google Scholar 

  • Hendricks, J.C., Morrison, A.R. and Mann, G.L. (1982). Different behaviors during paradoxical sleep without atonia depend on pontine lesion site. Brain Res., 239, 81–105.

    Article  CAS  PubMed  Google Scholar 

  • Hinsey, J.C., Ran son, S.W. and McNattln, R.G. (1930). The role of the hypothalamus and mesencephalon in locomotion. Arch. Neurol. Psychiat., 23, 1–43, Chicago.

    Article  Google Scholar 

  • Magoun, H.W. and Rhines, R. (1946). An inhibitory mechanism in the bulbar reticular formation. J. Neurophysiol., 9, 165–171.

    CAS  PubMed  Google Scholar 

  • Mc Carley, R.W. (1980). Mechanisms and models of behavioral state control. In The Reticular Formation Revisited, (ed. Hobson, J.A. and Brazier, M.A.B.). pp. 375–403, Raven Press, New York.

    Google Scholar 

  • Mori, S., Shik, M.L. and Yagodnitsyn, A.S. (1977). Role of pontine tegmentum for locomotion control in mesencephalic cat. J. Neurophysiol., 40, 284–295.

    CAS  PubMed  Google Scholar 

  • Mori, S., Nishlmura, H., Kurakami, C. Yamamura, T. and Aokl, M. (1978). Controlled locomotion in the mesencephalic cat: distribution of facilitatory and inhibitory regions within pontine temen-tum. J. Neurophysiol., 41, 1580–1591.

    CAS  PubMed  Google Scholar 

  • Mori, S., Kawahara, K. and Sakamoto. (1983). Supraspinal aspects of locomotion in the mesencephalic cat. In Neural Control, (ed. Roberts, A. and Roberts, B.L., pp. 445–468, Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Mori, S., Sakamoto, T. and Ohta, Y. (in press). Neuronal mechanisms underlying “plastic control changes” in the decerebrate, reflex standing cats. In Neuronal mechanisms of conditioning, (ed. Woddy, C.D. and Alkon, D.L.).

    Google Scholar 

  • Mori, S., Ohta, Y. , Marsuyama, K. and Takakusaki, K. (in press). The setting postural muscle tone: its importance for behaviors. In Neuronal and Endogenous Chemical Control Mechanisms on Emotional Behavior. Japan Scientific Societies and Springer-Verlag.

    Google Scholar 

  • Mori, S., Kawahara, K., Sakamoto, T., Aoki, M. and Tomiyama, T. (1982). Setting and resetting of postural muscle tone in the decerebrate cat by stimulation of the brain stem. J. Neurophysiol., 48, 737–748.

    CAS  PubMed  Google Scholar 

  • Mori, S., Nishlmura, H. and Aoki, M. (1980). Brain stem activation of the spinal stepping generator. In Reticular Formation Revisited IBR0 Monograph Series Vol. 6. (ed. J.A. Hobson and M.A.B. Brazier). pp. 241–259, Raven Press, New York.

    Google Scholar 

  • Morrison, A.R. and Reiner, P.B. (1985). A dissection of paradoxical sleep. In Brain Mechanisms of Sleep, (ed. McGinity, D.J., Drucker-Colin, R., Morrison, A.R. and Parmeggiani, P.L.). pp. 97–110.

    Google Scholar 

  • Ohta, Y., Sakamoto, T. and Mori, S. (1984). The cells of origin projecting their axons to the dorsal part of the central tegmental field in the pons. J. Physiol. Soc. Japan, 46 (8, 9), 377.

    Google Scholar 

  • Orlovsky, G.N. and Shlk, M.L. (1976). Control of locomotion: a neurophy8iologlcal analysis of the cat locomotor system. In International Review of Physiology and Neurophysiology. Vol. 2. (ed. R. Porter), pp. 282–317, Univ. of Park Press, Baltimore.

    Google Scholar 

  • Roberts, W.W. (1970). Hypothalamic mechanisms for motivational and apecies-typical behavior. In The Neural Control of Behavior, (ed. R.E. Whalen et al.), pp. 175–210, Academic Press, New York.

    Chapter  Google Scholar 

  • Sakai, K., Pastre, J.P., Salvert, M., Touret, M., Tohyama, T. and Jouvet, J. (1979). Tegmentoreticular projections with special reference to the muscular atonla during paradoxical sleep in the cat: an HRP study. Brain Res., 176, 233–254.

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto, T., Atsuta, Y. and Mori, S. (in press). Long-lasting excitability changes of soleus alpha-motoneuron induced by the midpoint stimulation in the decerebrate, standing cat. J. Neuro-physiol.

    Google Scholar 

  • Sherrington, CS. (1910). Flexion reflex of the limb, crossed extension reflex and reflex stepping and standing. J. Physiol., 40, 28–121.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shik, M.L. and Orlovsky, G.N. (1976). Neurophysiology of locomotor automatism. Physiol. Rev., 56, 465–501.

    CAS  PubMed  Google Scholar 

  • Sirota, M.G. and Shik, M.L. (1973). The cat locomotion elicited through the electorde implanted in the mid-brain. Sechenov Physiol. J. USSR, 59, 1314–1321. (In Russian)

    CAS  Google Scholar 

  • Snider, E.S. and Niemer, W.T. (1961). A stereotaxic atlas of the cat brain. Univ. of Chicago Press, Chicago.

    Google Scholar 

  • Steeves, J.D. and Jordan, L.M. (1984). Autoradiographic demonstration of the projections from the mesencephalic locomotor region. Brain Res., 307, 263–276.

    Article  CAS  PubMed  Google Scholar 

  • Valenstein, E.S., Cox, V.C. and Kakolewski, J.W. (1970). Reexamination of the role of the hypothalamus in motivation. Psychol. Rev., 77, 16–31.

    Article  CAS  PubMed  Google Scholar 

  • Waller, W.H. (1940). Progression movements elicited by subthalamic stimulation. J. Neurophysiol., 3, 300–307.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1986 The Wenner-Gren Center

About this chapter

Cite this chapter

Mori, S., Ohta, Y. (1986). Interaction of Posture and Locomotion and Initiation of Locomotion in Decerebrate Cats and Freely Moving Intact Cats. In: Grillner, S., Stein, P.S.G., Stuart, D.G., Forssberg, H., Herman, R.M. (eds) Neurobiology of Vertebrate Locomotion. Wenner-Gren Center International Symposium Series. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-09148-5_5

Download citation

Publish with us

Policies and ethics