Skip to main content

Adaptation in Trunk and Leg Movements and Motor Patterns to Speed, Mode and Direction of Progression in Man

  • Chapter
Neurobiology of Vertebrate Locomotion

Part of the book series: Wenner-Gren Center International Symposium Series ((WGS))

Abstract

The basic locomotor synergy for human locomotion produces alternating movements of the legs and arms and concomitant associated movements of the trunk to propel the body forwards and to keep balance. Under unconstrained conditions and at a constant comfortable speed, these movements are stereotyped, although complex, and highly reproducible (cf. Grillner, 1981; Pedotti, 1977). However, human locomotion possesses a high degree of versatility. Characteristic adaptations occur to changes in speed and direction of motion, to differences in slope and texture of the surface, etc. (see eg. Herman et al, 1976; Brandell, 1977; Inman et al, 1981; Winter, 1983) Adequate compensations are also made when sudden perturbations are presented during normal gait. Thus, reflex-induced changes have been shown to be gated in relation to the stride cycle (Belanger and Patla, 1984; cf Forssberg, 1979).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Belanger, M. and Patla, A.E. (1984). Corrective responses to perturbation applied during walking in humans. Neuroscience Letters, 49, 291–295.

    Article  CAS  PubMed  Google Scholar 

  • Brandell, B.R. (1977). Functional roles of the calf and vastus muscles in locomotion. Am. J. Phys. Med., 56, 59–74.

    CAS  PubMed  Google Scholar 

  • Carlson, H., Thorstensson, A., and Nilsson, J. (1985). The activation pattern of the lumbar back muscles during locomotion: Effects of voluntary modifications of the normal trunk movements. Acta Physiol. Scand. (subm. for publ.).

    Google Scholar 

  • Cavagna, A. and Franzetti, P. (1981). Mechanics of competition walking. J. Physiol., 315, 243–251.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Forssberg, H. (1979). Stumbling corrective reaction: a phase dependent compensatory reaction during locomotion. J. Neuro physiol., 42, 936–953.

    CAS  Google Scholar 

  • Grillner, S. (1981). Control of locomotion in bipeds, tetrapods and fish. In Handbook of Physiology, Sect. 1, The Nervous System, Vol. 2, (ed. V.B. Brooks), Waverly Press, Baltimore. 1179–1236.

    Google Scholar 

  • Halbertsma, J.M. (1983). The stride cycle of the cat: The modelling of locomotion by computerized analysis of automatic recordings. Acta Physiol. Scand. Suppl. 521.

    Google Scholar 

  • Herman, R. , Wirta, R., Bampton, S., and Finley, F.R. (1976). Human solutions for locomotion: single limb analysis. In Neural Control of Locomotion. (eds. R.M. Herman, S. Grillner, P.S.G. Stein, and D.G. Stuart). Plenum Press, N.Y. 13–50.

    Chapter  Google Scholar 

  • Inman, V.T., Ralston, H.J., and Todd, F. (1981). Human Walking. Williams & Wilkins, Baltimore.

    Google Scholar 

  • Mann, R. and Herman, J. (1985). Kinematic analysis of Olympic sprint performance; men’s 200 meters. Int. J. Sports Biomech., 1, 151–162.

    Google Scholar 

  • Nelson, R.C., Dillman, C.J., Lagasse, P., and Bickett, P. (1972). Biomechanics of overground versus treadmill running. Med. Sci. Sports, 4, 223–240.

    Google Scholar 

  • Nilsson, J. and Thorstensson, A. (1985). Adaptability in frequency and amplitude of leg movements during human locomotion at different speeds. Acta Physiol. Scand. (subm. for publ.).

    Google Scholar 

  • Nilsson, J., Stokes, V.P., and Thorstensson, A. (1985a). A new method to measure foot contact. J. Biomech., 18, 625–627.

    Article  CAS  PubMed  Google Scholar 

  • Nilsson, J., Thorstensson, A., and Halbertsma, J. (1985b). Changes in leg movements and muscle activity with speed of locomotion and mode of progression in humans. Acta Physiol. Scand., 123, 457–475.

    CAS  Google Scholar 

  • Pedotti, A. (1977). A study of motor coordination and neuromuscular activities in human locomotion. Biol. Cybern., 26, 53–62.

    Article  CAS  PubMed  Google Scholar 

  • Philippson, M. (1905). L’autonomie et la centralisation dans le système nerveux des animaux. Trav. Lab. Physiol. Inst. Solvay Bruxelles, 7, 1–208.

    Google Scholar 

  • Ralston, H. J. (1976). Energetics of human walking. In Neural Control of Locomotion. (eds. R.M. Herman, S. Grillner, P.S.G. Stein, and D.G. Stuart). Plenum Press, N.Y. 77–98.

    Chapter  Google Scholar 

  • Shapiro, D.C., Zernicke, R.F., Gregor, R.J., and Diestel, J.D. (1981). Evidence for generalised motor programs using gait pattern analysis. J. Motor Behav., 13, 33–47.

    Article  CAS  Google Scholar 

  • Thorstensson, A., Carlson, H., Zomlefer, M.R., and Nilsson, J. (1982). Lumbar back muscle activity in relation to trunk movements during locomotion in man. Acta Physiol. Scand., 116, 13–20.

    CAS  Google Scholar 

  • Thorstensson, A., Nilsson, J., Carlson, H., and Zomlefer, M.R. (1984). Trunk movements in human locomotion. Acta Physiol. Scand., 121, 9–22.

    CAS  Google Scholar 

  • Thorstensson, A. (1985). How is the normal locomotor program modified to produce backward walking? Exp. Brain Res. (in press).

    Google Scholar 

  • Winter, D.A. (1983). Biomechanical motor patterns in normal walking. J. Motor Behav., 15, 302–330.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1986 The Wenner-Gren Center

About this chapter

Cite this chapter

Thorstensson, A. (1986). Adaptation in Trunk and Leg Movements and Motor Patterns to Speed, Mode and Direction of Progression in Man. In: Grillner, S., Stein, P.S.G., Stuart, D.G., Forssberg, H., Herman, R.M. (eds) Neurobiology of Vertebrate Locomotion. Wenner-Gren Center International Symposium Series. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-09148-5_41

Download citation

Publish with us

Policies and ethics