Skip to main content

Interaction between Sensory Signals and the Central Networks Controlling Locomotion in Lamprey, Dogfish and Cat

  • Chapter
Neurobiology of Vertebrate Locomotion

Part of the book series: Wenner-Gren Center International Symposium Series ((WGS))

Abstract

In all vertebrates investigated a motor pattern more or less similar to that of locomotion can be generated in the absence of movement-related sensory signals in all vertebrates investigated. Under normal conditions however, sensory signals may have a profound influence on the spinal networks generating the motor pattern. Indeed the durations of the locomotor cycle can be modified substantially as well as the duration of its components like the support phase or the swing phase (cf Grillner 1975). The object of this brief review is to briefly summarize the evidence obtained in different vertebrates since recent more extensive reviews are available (Grillner 1981, 1985a, b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersson, O. and Grillner, S. (1981). Peripheral control of the cat’s step cycle. I. Phase dependent effects of ramp-movement s of the hip during “fictive locomotion”. Acta Physiol. Scand., 113, 89–101.

    CAS  Google Scholar 

  • Andersson, O. and Grillner, S. (1983). Peripheral control of the cat’s step cycle. II. Entrainment of the central pattern generators for locomotion by sinusoidal hip movements during “fictive locomotion”. Acta Physiol. Scand., 118, 229–239.

    CAS  Google Scholar 

  • Barnes, W.J.P. (1977). Proprioceptive influences on motor output during walking in the crayfish. J. Physiol. 73, 543–564.

    CAS  Google Scholar 

  • Duysens, J. and Pearson, K.G. (1980). Inhibition of flexor burst generation by loading ankle extensor muscles in walking cats. Brain Res., 187, 321–332.

    Article  CAS  PubMed  Google Scholar 

  • Forssberg, H. , Grillner, S. and Rossignol, S. (1977). Phasic gain control of reflexes from the dorsum of the paw during spinal locomotion. Brain Res., 132, 121–139.

    Article  CAS  PubMed  Google Scholar 

  • Forssberg, H., Grillner, S., Halbertsma, J. and Rossignol, S. (1980b). The locomotion of the low spinal cat. II. Interlimb coordination. Acta Physiol. Scand., 108, 283–295.

    CAS  Google Scholar 

  • Grillner, S. (1972). The role of muscle stiffness in meeting the changing postural and locomotor requirements for force development by the ankle extensors. Acta Physiol. Scand., 86, 92–108.

    CAS  Google Scholar 

  • Grillner, S. (1974). On the generation of locomotion in the spinal dogfish. Exp. Brain Res., 20, 459–470.

    Article  CAS  PubMed  Google Scholar 

  • Grillner, S. (1975). Locomotion in vertebrates: Central mechanisms and reflex interaction. Physiol Rev., 35, 247–304.

    Google Scholar 

  • Grillner, S. (1981). Control of locomotion in bipeds, tetrapods and fish. In Handbook of Physiology, sect. 1. The Nervous System II., Motor Control, (ed. V.B. Brooks), pp. 1170–1236. American Physiol. Soc., Waverly Press, Maryland.

    Google Scholar 

  • Grillner, S. (1985). Neurobiological bases of rhythmic motor acts in vertebrates. Science, 228, 143–149.

    Article  CAS  PubMed  Google Scholar 

  • Grillner, S. (1985b). Neural control of vertebrate locomotion-central mechanisms and reflex interaction with special reference to the cat. In Feedback and Motor Control in Invertebrates and Vertebrates. (eds. W.J.P. Barnes and M.H. Gladden), pp. 36–56, Biddies Ltds, Guildford and King’s Lynn, Great Britain.

    Google Scholar 

  • Grillner, S., McClellan, A. and Perret, C. (1981). Entrainment of the spinal pattern generators for swimming by mechanosensitive elements in the lamprey spinal cord in vitro. Brain Res., 217, 380–386.

    Article  CAS  PubMed  Google Scholar 

  • Grillner, S., Perret, C. and Zangger, P. (1976). Central generation of locomotion in the spinal dogfish. Brain Res., 109, 255–269.

    Article  CAS  PubMed  Google Scholar 

  • Grillner, S. and Rossignol, S. (1978). On the initiation of the swing phase of locomotion in chronic spinal cats. Brain Res., 146, 269–277.

    Article  CAS  PubMed  Google Scholar 

  • Grillner, S. and Wallén, P. (1977). Is there a peripheral control of the central pattern generators for swimming in dogfish? Brain Res., 127, 291–295.

    Article  CAS  PubMed  Google Scholar 

  • Grillner, S. and Wallén, P. (1982). On peripheral control mechanisms acting on the central pattern generators for swimming in the dogfish. J. Exp. Biol., 98, 1–22.

    CAS  PubMed  Google Scholar 

  • Grillner, S. and Wallén, P. (1984). How does the lamprey central nervous system make the lamprey swim? J. Exp. Biol., 112, 337–357.

    Google Scholar 

  • Grillner, S., Williams, T. and Lagerbäck, P-Å. (1984). The edge cell, a possible intraspinal mechanoreceptor. Science, 228, 500–503.

    Article  Google Scholar 

  • Halbertsrna, J. (1983). The stride cycle of the cat: The modelling of locomotion by computerized analysis of automatic recordings. Acta Physiol. Scand., Suppl. 521.

    Google Scholar 

  • Pearson, K.G. (1985). Are there central pattern generators for walking and flight in insect? In Feedback and Motor Control in Invertebrates and Vertebrates). (eds. R. Herman, S. Grillner, P.S.G. Stein and D.G. Stuart), pp. 519–537. Plenum Press, New York.

    Google Scholar 

  • Roberts, A., Soffe, S.R. and Dale, N. (1986). Spinal interneurones and swimming in frog embryos. In Neurobiology of vertebrate locomotion. (eds. S. Grillner, P.S.G. Stein. D.G. Stuart, H. Forssberg and R. Herman). In press.

    Google Scholar 

  • Rossignol, S. and Gauthier, L. (1980). An analysis of mechanisms controlling the reversal of crossed spinal reflexes. Brain Res., 182, 31–45.

    Article  CAS  PubMed  Google Scholar 

  • Stein, R.B. (1986). The roles of muscles spindles and the fusimotor system in the control of locomotion. In Neurobiology of vertebrate locomotion, (eds. S. Grillner, P.S.G. Stein, D.G. Stuart, H. Forssberg and R. Herman). In press.

    Google Scholar 

  • Steiner, I. (1886). Uber das Centralnervensystem der grunen Eidechse, nebst weiteren Untersuchungen uber das des Haifisches. Siztungsberichten der K. Preuss. Akad. Wissensch. 32, 539–543.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1986 The Wenner-Gren Center

About this chapter

Cite this chapter

Grillner, S. (1986). Interaction between Sensory Signals and the Central Networks Controlling Locomotion in Lamprey, Dogfish and Cat. In: Grillner, S., Stein, P.S.G., Stuart, D.G., Forssberg, H., Herman, R.M. (eds) Neurobiology of Vertebrate Locomotion. Wenner-Gren Center International Symposium Series. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-09148-5_31

Download citation

Publish with us

Policies and ethics