Skip to main content

Phasic Control of Vertebrate Motoneurones During Rhythmic Motor Acts, with Special Reference to Fictive Locomotion in the Lamprey

  • Chapter
Neurobiology of Vertebrate Locomotion

Part of the book series: Wenner-Gren Center International Symposium Series ((WGS))

  • 337 Accesses

Abstract

During the performance of a rhythmic motor act, the phasic activity of motoneurones is controlled such that each group of motoneurones is made to produce a specific pattern of activity, and so that the coordination between different groups is adequate for the particular motor task. In the study of the neuronal circuitry generating a certain motor act, detailed knowledge about the activity patterns in motoneurones is clearly a natural, and essential, element. It is important, however, to realize that the motoneuronal activity does not necessarily reflect precisely the output pattern from the rhythm-generating circuitry. Other mechanisms, not directly related to the output from the generator network, may also contribute to the pattern of activity seen in motoneurones. It is the purpose of the present paper to review some different mechanisms that may be of importance in controlling the periodic activity of vertebrate motoneurones during a rhythmic motor act. The myotomal motoneurones of the lamprey and their activity during fictive locomotion have been chosen as a starting point for this discussion, which also makes comparisons with other vertebrate systems, in an attempt to evaluate the generality of the phasic control of motoneuronal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berkinblit, M.B., Deliagina, T.G., Orlovsky, G.N. and Feldman, A.G. (1980). Activity of motoneurons during fictive scratch reflex in the cat. Brain Res., 193, 427–438.

    Article  CAS  PubMed  Google Scholar 

  • Brodin, L. and Grillner, S. (1985). The role of putative excitatory amino acid neurotransmitters in the initiation of locomotion in the lamprey spinal cord. Brain Res. (In press).

    Google Scholar 

  • Buchanan, J.T. (1982). Identification of Intemeurons With Contralateral, Caudal Axons in the Lamprey Spinal Cord: Synaptic Interactions and Morphology. J. Neurophysiol., 47, 961–975.

    CAS  PubMed  Google Scholar 

  • Buchanan, J.T. Premotor Interneurons in the Lamprey Spinal Cord: Morphology, Synaptic Interactions, and Activities During Fictive Swimming. In Neurobiology of Vertebrate Locomotion, (eds. S. Grillner, P.S.G. Stein, H. Forssberg, D. Stuart and R. Herman). MacMillan Press, London. (In press)

    Google Scholar 

  • Buchanan, J. and Cohen, A.H. (1982). Activities of Identified Interneurons, Motoneurons, and Muscle Fibers During Fictive Swimming in the Lamprey and Effects of Reticulospinal and Dorsal Cell Stimulation. J. Neurophysiol., 47, 948–960.

    CAS  PubMed  Google Scholar 

  • Chandler, S.H. and Goldberg, L.J. (1982). Intracellular Analysis of Synaptic Mechanisms Controlling Spontaneous and Cortically Induced Rhythmical Jaw Movements in the Guinea Pig. J. Neurophysiol., 48, 126–138.

    CAS  PubMed  Google Scholar 

  • Cohen, A.H. and Wallén, P. (1980). The Neuronal Correlate of Locomotion in Fish. “Fictive Swimming” Induced in an In Vitro Preparation of the Lamprey Spinal Cord. Exp. Brain Res., 41, 11–18.

    Article  CAS  PubMed  Google Scholar 

  • Conway, B.A., Hultbom, H. and Mintz, I. (1985). Bistable Behaviour of α-motoneurones Induced by i.v. Injection of L-DOPA in the Spinal Cat. Acta Physiol. Scand., 124, Suppl. 542, 70.

    Google Scholar 

  • Coombs, J.S., Eccles, J.C. and Fatt, P. (1955). The Specific Ionic Conductances and the Ionic Movements Across the Motoneuronal Membrane that Produce the Inhibitory Postsynaptic Potential. J. Physiol., 130, 326–373.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dale, N. (1985). Reciprocal Inhibitory Interneurones in the Xenopus Embryo Spinal Cord. J. Physiol., 363, 61–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dale, N. and Roberts, A. (1985). Dual-component Amino-acid-mediated Synaptic Potentials: Excitatory Drive For Swimming in Xenopus Embryos. J. Physiol., 363, 35–59.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Edgerton, V.R., Grillner, S., Sjostrom, A. and Zangger, P. (1976). Central Generation of Locomotion in Vertebrates. In Neural Control of Locomotion, (eds. R.M. Herman, S. Grillner, P.S.G. Stein and D.G. Stuart). Plenum Press, New York. pp. 439–464.

    Chapter  Google Scholar 

  • Feldman, A.G. and Orlovsky, G.N. (1975). Activity of Interneurons Mediating Reciprocal la Inhibition During Locomotion. Brain Res., 84, 181–194.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg, L.J. and Chandler, S.H. (1981). Evidence for pattern generator control of the effects of spindle afferent input during rhythmical jaw movements. Can. J. Physiol. Pharmacol., 59, 707–712.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg, L.J. and Chandler, S.H. (1981). Evidence for pattern generator control of the effects of spindle afferent input during rhythmical jaw movements. Can. J. Physiol. Pharmacol., 59, 707–712.

    Article  CAS  PubMed  Google Scholar 

  • Grillner, S. (1974). On the Generation of Locomotion in the Spinal Dogfish. Exp. Brain Res., 20, 459–470.

    Article  CAS  PubMed  Google Scholar 

  • Grillner, S., Brodin, L., Sigvardt, K. and Dale, N. Rhythmogenesis in the Lamprey Locomotor Network. In Neurobiology of Vertebrate Locomotion, (eds. S. Grillner, P.S.G. Stein, H. Forssberg, D. Stuart and R. Herman). MacMillan Press, London. (In press)

    Google Scholar 

  • Grillner, S., McClellan, A., Sigvardt, K., Wallén, P. and Wilen, M. (1981). Activation of NMDA-receptors elicits “Fictive locomotion” in lamprey spinal cord in vitro. Acta Physiol. Scand., 113, 549–551.

    Article  CAS  PubMed  Google Scholar 

  • Grillner, S. and Wallén, P. (1985). The Ionic Mechanisms Underlying N-methyl-D-aspartate Receptor-induced, Tetrodotoxin-resistant Membrane Potential Oscillations in Lamprey Neurons Active During Locomotion. Neurosci. Lett., (In press).

    Google Scholar 

  • Hounsgaard, J., Hultborn, H., Jespersen, B. and Kiehn, O. (1984). Intrinsic Membrane Properties Causing a Bistable Behaviour of α-Motoneurones. Exp. Brain Res., 55, 391–394.

    Article  CAS  PubMed  Google Scholar 

  • Hounsgaard, J. and Kiehn, O. (1985). Ca++ Dependent Bistability Induced by Serotonin in Spinal Motoneurons. Exp. Brain Res., 57, 422–425.

    Article  CAS  PubMed  Google Scholar 

  • Jordan, L.M. (1981). Comment: Gating effects and constraints on the central pattern generators for rhythmic movements. Can. J. Physiol., 59, 727–732.

    Article  CAS  Google Scholar 

  • Jordan, L.M. (1983). Factors Determining Motoneuron Rhythmicity During Fictive Locomotion. In Neural Origin of Rhythmic Movements. (eds. A. Roberts and B. Roberts). Cambridge University Press, pp. 423–444.

    Google Scholar 

  • Kahn, J.A. (1982). Patterns of Synaptic Inhibition in Motoneurons and Interneurons During Fictive Swimming in the Lamprey, as Revealed by C1- Injections. J. Comp. Physiol., 147, 189–194.

    Article  Google Scholar 

  • Kirkwood, P.A. and Sears, T.A. (1978). The Synaptic Connexions to Intercostal Motoneurones as Revealed by the Average Common Excitation Potential. J. Physiol., 275, 103–134.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McClellan, A.D. and Grillner, S. (1983). Initiation and Sensory Gating of “Fictive” Swimming and Withdrawal Responses in an In Vitro Preparation of the Lamprey Spinal Cord. Brain Res., 269, 237–250.

    Article  CAS  PubMed  Google Scholar 

  • McCrea, D.A., Pratt, CA. and Jordan, L.M. (1980). Renshaw Cell Activity and Recurrent Effects on Motoneurons During Fictive Locomotion. J. Neurophysiol., 44, 475–488.

    CAS  PubMed  Google Scholar 

  • Miller, S. and Scott, P.D. (1977). The Spinal Locomotor Generator. Exp. Brain Res., 30, 387–403.

    CAS  PubMed  Google Scholar 

  • Perret, C. (1983). Centrally Generated Pattern of Motoneuron Activity During Locomotion in the Cat. In Neural Origin of Rhythmic Movements, (eds. A. Roberts and B. Roberts). Cambridge University Press, pp. 405–422.

    Google Scholar 

  • Perret, C. Synaptic Influences Contributing to the Pattern of Limb Motoneuron Activity During Fictive Locomotion in the Cat. In Neurobiology of Vertebrate Locomotion, (eds. S. Grillner, P.S.G. Stein, H. Forssberg, D. Stuart and R. Herman). MacMillan Press, London. (In press)

    Google Scholar 

  • Perret, C. and Cabelguen, J.-M. (1980). Main Characteristics of the Hindlimb Locomotor Cycle in the Decorticate Cat With Special Reference to Bifunctional Muscles. Brain Res., 187, 333–352.

    Article  CAS  PubMed  Google Scholar 

  • Pratt, C.A. and Jordan, L.M. (1980). Recurrent Inhibition of Motoneurons in Decerebrate Cats During Controlled Treadmill Locomotion. J. Neurophysiol., 44, 489–500.

    CAS  PubMed  Google Scholar 

  • Roberts, A. and Clarke, J.D.W. (1982). The Neuroanatomy of an Amphibian Embryo Spinal Cord. Phil. Trans. R. Soc. Lond., 296, 195–212.

    Article  CAS  Google Scholar 

  • Roberts, A. and Kahn, J.A. (1982). Intracellular Recordings From Spinal Neurons During ‘Swimming’ in Paralysed Amphibian Embryos. Phil. Trans. R. Soc. Lond., 296, 213–228.

    Article  CAS  Google Scholar 

  • Roberts, A., Kahn, J.A., Soffe, S.R. and Clarke, J.D.W. (1981). Neural Control of Swimming in a Vertebrate. Science, 213, 1032–1034.

    Article  CAS  PubMed  Google Scholar 

  • Roberts, A., Soffe, S.R. and Dale, N. Spinal Interneurones and Swimming in Frog Embryos. In Neurobiology of Vertebrate Locomotion. (eds. S. Grillner, P.S.G. Stein, H. Forssberg, D. Stuart and R. Herman). MacMillan Press, London. (In press)

    Google Scholar 

  • Roberts, B.L. and Williamson, R.M. (1983). Motor Pattern Formation in the Dogfish Spinal Cord. In Neural Origin of Rhythmic Movements. (eds. A. Roberts and B. Roberts). Cambridge University Press, pp. 331–350.

    Google Scholar 

  • Robertson, G.A., Keifer, J. and Stein, P.S.G. (1982). Central Programs for Three Forms of the Turtle Scratch Reflex. Soc. Neurosci. Abstr., 8, 159.

    Google Scholar 

  • Russell, D.F. and Wallén, P. (1980). On the Pattern Generator for Fictive Swimming in the Lamprey, Ichthyomyzon unicuspis. Acta Physiol. Scand., 108, 9A.

    Google Scholar 

  • Russell, D.F. and Wallén, P. (1983). On the Control of Myotomal motoneurones During “Fictive Swimming” in the Lamprey Spinal Cord In Vitro. Acta Physiol. Scand., 117, 161–170.

    Article  CAS  PubMed  Google Scholar 

  • Sears, T.A. (1964). The Slow Potentials of Thoracic Respiratory Motoneurones and Their Relation to Breathing. J. Physiol., 175, 404–424.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sigvardt, K.A. and Grillner, S. (1981). Spinal Neuronal Activity During Fictive Locomotion in the Lamprey Spinal Cord In Vitro. Soc. Neurosci. Abstr., 7, 362.

    Google Scholar 

  • Sigvardt, K.A., Grillner, S., Wallén, P. and van Dongen, P.A.M. (1985). Activation of NMDA Receptors Elicits Fictive Locomotion and Bistable Membrane Properties in the Lamprey Spinal Cord. Brain Res., 336, 390–395.

    Article  CAS  PubMed  Google Scholar 

  • Soffe, S.R. and Roberts, A. (1982a). Activity of Myotomal Motoneurons During Fictive Swimming in Frog Embryos. J. Neuro-physiol., 48, 1274–1278.

    CAS  Google Scholar 

  • Soffe, S.R. and Roberts, A. (1982b). Tonic and Phasic Synaptic Input to Spinal Cord Motoneurons During Fictive Locomotion in Frog Embryos. J. Neurophysiol., 48, 1279–1288.

    CAS  PubMed  Google Scholar 

  • Stein, P.S.G. (1983). The Vertebrate Scratch Reflex. In Neural Origin of Rhythmic Movements, (eds. A. Roberts and B. Roberts). Cambridge University Press, pp. 383–403.

    Google Scholar 

  • Stein, P.S.G. and Grossman, M.L. (1980). Central Program for Scratch Reflex in Turtle. J. Comp. Physiol., 140, 287–294.

    Article  Google Scholar 

  • Stein, P.S.G., Robertson, G.A., Keifer, J., Grossman, M.L., Berenbeim, J.A. and Lennard, P.R. (1982). Motor Neuron Synaptic Potentials During Fictive Scratch Reflex in Turtle. J. Comp. Physiol., 146, 401–409.

    Article  Google Scholar 

  • Wallén, P., Grafe, P. and Grillner, S. (1984). Phasic Variations of Extracellular Potassium During Fictive Swimming in the Lamprey Spinal Cord In Vitro. Acta Physiol. Scand., 120, 457–463.

    Article  PubMed  Google Scholar 

  • Wallén, P. and Grillner, S. (1985). The Effect of Current Passage on N-methyl-D-aspartate-induced, Tetrodotoxin-resistant Membrane Potential Oscillations in Lamprey Neurons Active During Locomotion. Neurosci. Lett., 56, 87–93.

    Article  PubMed  Google Scholar 

  • Wallén, P., Grillner, S., Feldman, J.L. and Bergelt, S. (1985). Dorsal and Ventral Myotome Motoneurons and Their Input During Fictive Locomotion in Lamprey. J. Neuroscience, 5, 654–661.

    PubMed  Google Scholar 

  • Wallén, P. and Lansner, A. (1984). Do the Motoneurones Constitute a Part of the Spinal Network Generating the Swimming Rhythm in the Lamprey? J. exp. Biol., 113, 493–497.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1986 The Wenner-Gren Center

About this chapter

Cite this chapter

Wallén, P. (1986). Phasic Control of Vertebrate Motoneurones During Rhythmic Motor Acts, with Special Reference to Fictive Locomotion in the Lamprey. In: Grillner, S., Stein, P.S.G., Stuart, D.G., Forssberg, H., Herman, R.M. (eds) Neurobiology of Vertebrate Locomotion. Wenner-Gren Center International Symposium Series. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-09148-5_20

Download citation

Publish with us

Policies and ethics