Skip to main content

Command Systems for Initiating Locomotion in Fish and Amphibians: Parallels to Initiation Systems in Mammals

  • Chapter
Neurobiology of Vertebrate Locomotion

Part of the book series: Wenner-Gren Center International Symposium Series ((WGS))

Abstract

The motor systems controlling behaviors can be divided into at least two compartments: the motor networks, which generate the motor activity, and the “command” system, which initiates the behavior by activating the motor networks. In both vertebrates and invertebrates, the motor activity for many innate behaviors, such as locomotion, feeding, scratching, and grooming, is centrally programmed; the underlying motor networks can generate the appropriate motor patterns in the absence of sensory feedback. “Central pattern generator” (CPG) networks for vertebrate locomotion are located and distributed in the spinal cord and produce the rhythmic locomotor pattern (Grillner, 1981).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brodin, L., Grillner, S. and McClellan, A.D. (1984). Is an activation of excitatory N-methyl D-aspartate receptors of importance for the initiation of swimming in the lamprey spinal nervous system. Acta Physiol. Scand. 120, 6

    Google Scholar 

  • Currie, S. (1984). A vibratory-evoked startle response in larval lampreys (Petromyzon marinus). Soc. Neurosci. Abstr. 10, 398

    Google Scholar 

  • Davis, M. (1985). The mammalian startle response. In Neural Mechanisms in Startle Behavior, (ed. R.C. Eaton). Plenum Press, New York

    Google Scholar 

  • Eaton, R.C. and Hackett, J.T. (1985). The neural basis of fast-starts involving escape in teleost fish. In Neural Mechanisms in Startle Behavior, (ed. R.C. Eaton). PIenum Press, New York

    Google Scholar 

  • Eideiberg, E., Waiden, J.G. and Nguyen, L.H. (1981). Locomotor control in macaque monkeys. Brain 104, 647–663

    Article  Google Scholar 

  • Faber, D.S. and Korn, H. (1978). Electrophysiology of the Mauthner cell: Basic properties, synaptic mechanisms, and associated networks. In Neurobiology of the Mauthner Cell. (eds. D.S. Faber and H. Korn). Raven Press, New York.

    Google Scholar 

  • Hackett, J.T., Cochran, S.L. and Brown, D.L. (1979). Functional properties of afferents which synapse on the Mauthner neuron in the amphibian tadpole. Brain Res. 176, 148–152

    Article  CAS  PubMed  Google Scholar 

  • Hackett, J.T. and Faber, D.S. (1983). Mauthner axon networks mediating supraspinal components of the startle response. Neuroscience 8, 317–331

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Rill, E., Skinner, R.D. and Fitzgerald, J.A. (1983). Activity in the mesencephalic locomotor region during locomotion. Exp. Neurol. 82, 609–622

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Rill, E., Skinner, R.D. and Fitzgerald, J.A. (1985). Chemical activation of the mesencephalic locomotor region. Brain Res. 330, 43–54

    Article  CAS  PubMed  Google Scholar 

  • Grillner, S. (1976). Some aspects on the descending control of the spinal circuits generating locomotor movements. In Neural Control of Locomotion, (eds. R. Herman, S. Grillner, P. Stein, and D. Stuart). Plenum Press, New York

    Google Scholar 

  • Griliner, S. (1981). Control of locomotion in bipeds, tetrapods, and fish. In Handbook of Physiology, Motor Control, (ed. V. Brooks). American Physiological Society.

    Google Scholar 

  • Griliner, S. and Wallen P. (1984). How does the lamprey central nervous system make the lamprey swim? J. Exp. Biol. 112, 337–357

    Google Scholar 

  • Jacobson, R.D. and Hollyday, M. (1982). Electrically evoked walking and fictive locomotion in the chick. J. Neurophysiol. 48, 257–270

    CAS  PubMed  Google Scholar 

  • Jordan, L.M., Pratt, C.A., and Menzies, J.E. (1979). Locomotion evoked by brain stem stimulation: occurrence without phasic segmental afferent input. Brain Res. 177, 204–207

    Article  CAS  PubMed  Google Scholar 

  • Kashin, S., Brill, R., Ikehara, W. and Dizon, A. (1981). Induced locomotion by midbrain stimulation in restrained Skipjack tuna, Katwuwonus pelamis. J. Exp. Zool. 216, 327–329

    Article  Google Scholar 

  • Kashin, S.M., Feldman, A.G., and Orlovsky, G.N. (1975). Locomotion of fish evoked by electrical stimulation of the brain, Brain Res. 82, 41–47

    Article  Google Scholar 

  • Kazinnokov, O.V., Selionov, V.A., Shik, M.L. and Yakokleva, G.V. (1980). The rhombencephalic “locomotor region” in turtles. Neurophysiology 12, 251–257

    Article  Google Scholar 

  • Kramer, A.P. and Krasne, F.B. (1984). Crayfish escape behavior: Production of tail flips without giant fiber activity. J. Neurophysiol. 52, 189–211

    CAS  PubMed  Google Scholar 

  • Kupfermann, I. and Weiss, K. (1978). The command neuron concept. Behav. Brain Sei. 1, 3–39

    Article  Google Scholar 

  • Leonard, R.B., Rudomin, P., Droge, M.H., Grossman, A.E., and Willis, W.D. (1979). Locomotion in the decerebrate stingray. Neurosci. Lett. 14, 315–319

    Article  CAS  PubMed  Google Scholar 

  • McClellan, A.D. (1984). Descending control and sensory gating of “fictive” swimming and turning responses elicited in an in vitro brainstem/spinal cord preparation of the lamprey. Brain Res. 302, 151–162

    Article  CAS  PubMed  Google Scholar 

  • McClellan, A.D. and Farel, P.B. (1985). Pharmacological activation of locomotor patterns in larval and adult frog spinal cords. Brain Res. 332, 119–130

    Article  CAS  PubMed  Google Scholar 

  • McClellan, A.D. and Grillner, S. (1983). Initiation and sensory gating of “fictive” swimming and withdrawal responses in an in vitro preparation of the lamprey spinal cord. Brain Res. 269, 37–250

    Article  Google Scholar 

  • McClellan, A.D. and Grillner, S. (1984). Activation of “fictive” swimming by electrical microstimulation of “locomotor command regions” in the brainstem of the lamprey. Brain Res. 300, 352–362

    Article  Google Scholar 

  • Mori, S., Shik, M.L. and Yagodnitsyn, A.S. (1977). Role of pontine tegmentum for locomotor control in mesencephalic cats. J. Neurophysiol. 40, 284–295

    CAS  PubMed  Google Scholar 

  • Noga, B.R., Kettler, J. and Jordan, L.M. (1984). Chemical excitation of cells in the pons and medulla produce locomotion in decerebrate cats. Soc. Neurosci. Abstr. 10, 632

    Google Scholar 

  • Roaf, H.E. and Sherrington, CS. (1910). Further remarks on the mammalian spinal preparation. Q. J. Exp. Physiol. 3, 209–211

    Article  Google Scholar 

  • Roberts, A., Soffe, S.R., Clarke, J.D.W. and Dale, N. (1983). Initiation and control of swimming in amphibian embryos. Soc. Exp. Biol. 37, 261–284

    CAS  Google Scholar 

  • Rock, M.K. (1980). Functional properties of Mauthner cell in the tadpole, Rana catesbiana. J. Neurophysiol. 44, 135–150

    CAS  PubMed  Google Scholar 

  • Rock, M.K., Hackett, J.T. and Brown, D.L. (1981). Does the Mauthner cell conform to the criteria of the command neuron concept? Brain Res. 204, 21–27

    Article  CAS  PubMed  Google Scholar 

  • Rovainen, CM. (1978). Mullar, Mauthner cells, and other reticulospinal neurons in the lamprey. In Neurobiology of the Mauthner Cell. (eds. D. Faber and H. Korn). Kaven Press, New York

    Google Scholar 

  • Shefchyk, S.J., Jell, R.M., and Jordan, L.M. (1984). Reversible cooling of the brainstem reveals areas required for mesencephalic locomotor region evoked treadmill locomotion. Exp. Brain Res. 56, 257–262

    Article  CAS  PubMed  Google Scholar 

  • Sherrington, C.S. (1910). Flexion-reflex of the limb, crossed extension reflex, and reflex stepping and standing. J. Physiol. London 40, 28–121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shik, M.L. (1980). Control of locomotion. In Regulatory Functions of the CNS. (eds. J. Szentagonthai, M. Palkovitz, and J. Hamori). Akademiai Kiado, Budapest

    Google Scholar 

  • Shik, M.L., Orlovsky, G.N. and Severin, F.V. (1966). Control of walking by means of electrical stimulation of the mid-brain. Biophysics 11, 756–765

    Google Scholar 

  • Shimamura, M. and Kogure, I. (1983). Discharge patterns of reticulospinal neurons corresponding with quadrapedal leg movements in thalamic cats. Brain Res. 230, 27–34

    Article  Google Scholar 

  • Skinner, R.D. and Garcia-Rill, E. (1985). The mesencephalic locomotor region (MLR) in the rat. Brain Res. (in press)

    Google Scholar 

  • Steeves, J.D. and Jordan, L.M. (1980). Localization of a descending pathway in the spinal cord which is necessary for controlled treadmill locomotion. Neuroscience Letters 20, 283–288

    Article  CAS  PubMed  Google Scholar 

  • Steeves, J.D. and Weinstein, G.N. (1984). Brainstem areas and descending pathways for the initiation of flying and walking in birds. Soc. Neurosci. Abstr. 10, 30

    Google Scholar 

  • Stein, P.S.G. (1978). Swimming movements elicited by electrical stimulation of the turtle spinal cord: the high spinal preparation. J. Comp. Physiol. 124, 203–210

    Article  Google Scholar 

  • Stein, P.S.G. (1983). The vertebrate scratch reflex. Symp. Soc. Exp. Biol. 37, 383–403

    CAS  PubMed  Google Scholar 

  • Wickelgren, W.O. (1977). Physiological and anatomical characteristics of reticulospinal neurons in lamprey. J. Physiol. 270, 89–114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wiersma, C.A.G. and Ikeda, K. (1964). Interneurons commanding swimmeret movements in the crayfish Procambarus clarkii (Girard). Comp. Biochem. Physiol. 12, 509–525

    Article  CAS  PubMed  Google Scholar 

  • Williams, B.J., Livingston, C.A. and Leonard, R.B. (1984). Spinal cord pathways involved in initiation of swimming in the stingray, Dasyatis sabina: Spinal cord stimulation and lesions. J. Neurophysiol. 51 578–591

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1986 The Wenner-Gren Center

About this chapter

Cite this chapter

McClellan, A.D. (1986). Command Systems for Initiating Locomotion in Fish and Amphibians: Parallels to Initiation Systems in Mammals. In: Grillner, S., Stein, P.S.G., Stuart, D.G., Forssberg, H., Herman, R.M. (eds) Neurobiology of Vertebrate Locomotion. Wenner-Gren Center International Symposium Series. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-09148-5_1

Download citation

Publish with us

Policies and ethics