Skip to main content

The Relationships of Receptors for Phencyclidine and Sigma Opiates in Rat Cerebellum: An Electrophysiological Analysis

  • Chapter
Receptor-Receptor Interactions

Part of the book series: Wenner-Gren Center International Symposium Series ((WGS))

  • 91 Accesses

Abstract

Two groups of opioid compounds seem to share many pharmacological properties with PCP, even though their structures are markedly different: benzomorphans such as cyclazocine and N-allylnormetazocine (SKF-10,047; Zukin et al., 1984; Teal and Holtzman, 1979; Mendelsohn, et al., 1985) and dioxolanes such as dexoxadrol (Cone et al., 1985; Shannon, 1983). This finding has led some to the postulate that the “sigma receptor”, one of the multiple opiate receptors reported in the CNS, is identical to the PCP receptor. Supporting this conjective, both cyclazocine and SKF-10,047, which have been shown to have high affinity for sigma opioid receptors (Neil 1985), displace [3H]-PCP binding in rat brain homogenates (Zukin et al., 1984; Mendelsohn et al., 1985). Although dexoxadrol has no analgesic actions in mice, it produces PCP-like catalepsy in the pigeon (Zimmerman et al. 1983) and also displaces [3H]-PCP binding-in rat brain homogenates (Zukin, 1982; Hampton et al., 1982). However, other types of receptor-mediated interactions could also account for the behavioral parallelisms of these agents. Thus, PCP could augment release of sigma opiates or visa versa. Alternatively, PCP and sigma opiates could interact with separate receptors which possess synergistic effector mechanisms postsynaptically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Cone, E.J., McQuinn, R.L., and Shannon, H.E. (1985). Structure-Activity relationship studies of phencyclidine derivatives in rats.J. Pharmacol. Exp. Ther., 221, 147–153.

    Google Scholar 

  • Eccles, J.C., Ito, M., and Szentagothai, J. (1967). The cerebellum as neuronal machine, New York, Springer Verlag.

    Google Scholar 

  • Hampton, R.Y., Medzihradsky, F., Woods. J.H., and Dahlstrom, P.J. (1982). Stereospecific binding of 3H-phencyclidine in brain membranes. Life Sci., 30, 2147–2154.

    Article  PubMed  CAS  Google Scholar 

  • Itzhak, Y., Hiller, J.M., and Simon, E. (1985). Characterization of specific binding sites for [3H](d)-N-Allylnormetazocine in rat brain membranes. Molecular Pharmacol., 27, 46–52.

    CAS  Google Scholar 

  • Johnson, K.M., and Snell, L.D. (1985) Effects of phencyclidine (PCP)-like drugs on turning behavior, 3H-dopamine uptake, and 3H-PCP binding. Pharmacol. Bichem. and Behavior., 22, 731–735.

    Article  CAS  Google Scholar 

  • Kim, M., Pang, K., Freedman, R., and Palmer, M.R. (1985). Electrophysiological effects of cyclazocine on rat cerebellar Purkinje neurons: Comparison with phencyclidine. Alcohol and Drug Res., 6: 23–36.

    Google Scholar 

  • Kosterlitz, H.W., Paterson, S.J., and Robson, L.E. (1981). Characterization of the k-subtype of the opiate receptors in guinea-pig brain. Br. J. pharmacol., 73, 939–949.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kuhar, M.J., Pert, C.B., and Snyder, S.H. (1973). Regional distribution of opiate binding in monkey and human brain. Nature 245. 447–451.

    Google Scholar 

  • Largent, B.L., Gundlach, A.L., and Snyder, S.H. (1984). Psychotomimetic opiate receptors labeled and visualized with (+)-[H3]-3-(3-hydroxyphenyl)-N-(l-propyl) piperidine. Proc. Natl. Acad. Sci., 81, 4983–4987.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Martin, B.R., Katzen, J.S., Woods, J.A., Tripathi, H.L., Harris, L.S., and May, E.L. (1984). Stereoisomers of [H3]-N-Allylnormetazocine bind to different sites in mouse brain. J. Pharmacol. Exp. Ther., 231, 539–544.

    PubMed  CAS  Google Scholar 

  • Marwaha, J., Palmer, M.R., Hoffer, B., and Freedman, R. (1980a). Phencyclidine-induced depressions of cerebellar Purkinje neurons. Life Sci., 26, 1509–1515.

    Article  PubMed  CAS  Google Scholar 

  • Marwaha, J., Palmer, M.R., Woodward, D.J., Hoffer, B.J., and Freedman, R. (1980b). Electrophysiological evidence for presynaptic actions of phencyclidine on noradrenergic terminals in rat cerebellum. J. Pharmacol. Exp. Ther., 215. 606–613.

    PubMed  CAS  Google Scholar 

  • Mendelsohn, L.G., Kalra, V., Johnson, B.G., and Kerchner, G.A. (1985). Sigma opioid receptor:characterization and co-identity with the phencyclidine receptor. J. Pharmacol. Exp. Ther., 233, 597–602.

    PubMed  CAS  Google Scholar 

  • Neil, A. (1985). Detection and characterization of four binding sites for opioids in mouse brain. Acta Pharmacol. et Toxicol., 56, 108–116.

    Article  CAS  Google Scholar 

  • Palmer, M.R., Bickford, P.C., Hoffer, B.J., and Freedman, R. (1983). Electrophysiological evidence for presynaptic actions of phencyclidine on noradrenergic transmission in rat cerebellum and hippocampus. In Phencyclidine and Related Arylcyclohexylamines: Present and Future Applications, ed. by J.M. Damenka, E.F. Domino, and P. Geneste, pp 443–467, NPP press, Ann Arbor.

    Google Scholar 

  • Rafferty, M.F., Mattson, M., Jacobson, A.E., and Rice, K.C. (1985). A specific acylating agent for the [3H]phencyclidine receptors in rat brain. FEBS Letters, 181, 318–322.

    Article  PubMed  CAS  Google Scholar 

  • Sethy, V.H., and McCall, J.M. (1984). High-affinity (3H)-dexoxadrol binding to rat brain membranes. Drug Develop. Res., 4, 635–645.

    Article  CAS  Google Scholar 

  • Shannon, H.E. (1983). Discriminative stimulus effects of phencyclidine: Structure-activity relationships In: Phencyclidine and Related Arycyclohexylamines: Present and Future Application, J.M. Kamenka, E.F. Domino and P. Geneste, eds., Ann. Arbor. NPP press pp 311–335.

    Google Scholar 

  • Sircar, R., Zukin, S.R. (1985b). Quantitative localization of [3H]TCP binding in rat brain by light microscopy autoradiography. Brain Res. 344, 142–145.

    Article  PubMed  CAS  Google Scholar 

  • Teal, J.J., and Holtzman, S.G. (1980). Discriminative stimulus effects of cyclazocine in rat. J. Pharmacol. Exp. Ther. 212 368–379.

    Google Scholar 

  • Wang, Y., Palmer, M.R., Freedman, R., Hoffer, B.J., Mattson, M., Lessor, R.A., Rafferty, M.F., Rice, K.C., and Jacobson, A.E. (1986a). Antagonism of phencyclidine action by metaphit in rat cerebellar Purkinje neurons: An electrophysiological study. Proc. Nat. Acad. Sci. U.S.A., 83, 2724–2727.

    Article  CAS  Google Scholar 

  • Wang, Y., Palmer, M.R., Freedman, R., Mattson, M., Lessor, R., Rafferty, M., Rice, K., Jacobson, A., Hoffer, B.J. (1985). Electrophysiological and biochemical study of the antagonism of PCP action by metaphit in rat cerebellar Purkinje neurons. In: Abstracts Part II. Society for Neuroscience,15th annual meeting, Dallas, Texas, p. 910.

    Google Scholar 

  • Wang, Y., Palmer, M.R., Freedman, R., Rice, K.C., Lessor, R.A., Jacobson, A.E., Hoffer, B.J. (1986b). Electrophysiological interactions of isomers of cyclazocine with the phencyclidine antagonist metaphit in rat cerebellar Purkinje neurons. J. Neurosci., (In press).

    Google Scholar 

  • Zimmerman, D.M., Woods, J.H., Hynes, M.D., Cantrell, B.E., Reamer, M., and Leander, J.D. (1983). Discovery and characterization of the phencyclidine-like actions of a new series of bens(f)isoquinoline derivatives. In Phencyclidine and Related Arylcyclohexylamines: Present and Future Applications, ed. by J.M. Damenka, E.F. Domino, and P. Geneste, pp 59–69, NPP press, Ann Arbor.

    Google Scholar 

  • Zukin, R.S., and Zukin, S.R. (1981). Demonstration of [H3] cyclazocine binding to multiple opiate receptor sites. Mol. Pharmacol., 20, 246–254.

    PubMed  CAS  Google Scholar 

  • Zukin R.S., and Zukin, S.R. (1983). A common receptor for phencyclidine and the sigma receptor. In: Phencyclidine and Related Arvlcvclohexylamines: Present and Future Application. J.M. Kamenka, E.F. Domino and P. Geneste, eds., Ann. Arbor. NPP Press, pp 107–124.

    Google Scholar 

  • Zukin, S.R. (1982). Differing stereospecificities distinguish opiate receptor subtypes. Life Sci., 31, 1307–1310.

    Article  PubMed  CAS  Google Scholar 

  • Zukin, S.R., Brady, K.T., Slifer, B.L., and Balster, R.L. (1984). Behavioral and biochemical stereoselectivity of sigma opiate/PCP receptors. Brain Res., 294, 174–177.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1987 The Wenner-Gren Center

About this chapter

Cite this chapter

Hoffer, B., Palmer, M., Moore, E., Kim, M., Wang, Y. (1987). The Relationships of Receptors for Phencyclidine and Sigma Opiates in Rat Cerebellum: An Electrophysiological Analysis. In: Fuxe, K., Agnati, L.F. (eds) Receptor-Receptor Interactions. Wenner-Gren Center International Symposium Series. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-08949-9_39

Download citation

Publish with us

Policies and ethics