GABA Receptors, Depression and Antidepressant Drug Action

  • Giuseppe Bartholini
  • Kenneth G. Lloyd
  • Bernard Scatton
  • Branimir Zivkovic
  • Paolo L. Morselli
Part of the Wenner-Gren Center International Symposium Series book series (WGS)

Abstract

The clinical demonstration of the major antidepressant action of GABAmimetic agents (Morselli et al., 1980; 1986; Muscn, 1986; Weiss et al., 1986) has led to the formulation of a coherent GABA hypothesis of depression. This hypothesis in addition is supported by a large body of evidence which however, remained inconclusive in the absence of clear cut clinical data with GABAmimetics. The compounds which have stimulated this progress include two benzylidene GABAmimetics, progabide: 4- [(4-chlorophenyl) (5-fluoro-2-hydroxy-phenyl)-methylene]amino butanamide, and fengabine: 2-[(Butylimino) (2-chlorophenyl)methyl]-4-chlorophenyl.

Keywords

Schizophrenia Haloperidol Monoamine Tricyclic Imipramine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J.L. (1983). Serotonin receptor changes after chronic antidepressant treatments: ligand binding, electrophysio-logical and behavioral studies. Life Sci., 32, 1791–1801.PubMedCrossRefGoogle Scholar
  2. Bartholini, G. (1985). GABA receptor agonists: pharmacological spectrum and therapeutic actions. Med. Res. Rev., 5(1), 55–75.PubMedCrossRefGoogle Scholar
  3. Bartholini, G., Scatton, B., Zivkovic, B., Lloyd, K.G., Depoortere, H., Langer, S.Z. and Morselli, P.L. (1985). GABA receptor agonists as a new therapeutic class. In Epilepsy and GABA Receptor Agonists: Basic and Therapeutic Research, (L.E.R.S. Monograph Series III) (eds. G. Bartholini, L. Bossi, K.G. Lloyd and P.L. Morselli), Raven Press, New York, 1–30.Google Scholar
  4. Bartholini, G., Lloyd, K.G. and Morselli, P.L. (1986a). GABA and Mood Disorders: Experimental and Clinical Research, (L.E.R.S. Monograph Series, IV). Raven Press, New York.Google Scholar
  5. Bartholini, G., Scatton, B., Zivkovic, B. and Lloyd, K.G. (1986b). On the mode of antidepressant action of GABA receptor agonists and monoamine uptake inhibitors. In GABA and Mood Disorders: Experimental and Clinical Research, (L.E.R.S. Monograph Series, IV)(eds. G. Bartholini, K.G. Lloyd and P.L. Morselli). Raven Press, New York, 105–111.Google Scholar
  6. Blier, P., De Montigny, C, Tardiff, D. (1984). Effects of two antidepressant drugs, mianserine and indalpine, on the serotonergic system: single cell studies in the rat. Psychopharmacol., 84, 242–249.CrossRefGoogle Scholar
  7. Blumberg, J.B., Vetulani, J., Stawarz, R. and Sulser, F. (1976). The noradrenergic cyclic AMP generating system in the limbic forebrain: pharmacological characterization in vitro and possible role of limbic noradrenergic mechanisms in the mode of action of antipsychotics. Eur. J. Pharmacol., 37, 357–366.PubMedCrossRefGoogle Scholar
  8. Broekkamp, C.L., Garrigou, D. and Lloyd, K.G. (1980). Serotonin-mimetic and antidepressant drugs on passive avoidance learning by olfactory bulbectomized rats. Pharmac. Biochem. Behav., 13, 643–646.CrossRefGoogle Scholar
  9. Brunello, N., Barbaccia, M.L., Chuang, D.M., and Costa, E. (1982). Down regulation of β-adrenergic receptors following repeated injections of desmethylimipramine: permissive role of serotonergic axons. Neuropharmacol., 21, 1145–1149.CrossRefGoogle Scholar
  10. Curet, O., Dennis, T. and Scatton, B. (1985). The formation of deaminated metabolites of dopamine in the locus coeruleus depends upon noradrenergic neuronal activity. Brain Res., 335, 297–301.PubMedCrossRefGoogle Scholar
  11. De Montigny, C. and Aghajanian, G.K. (1978). Tricyclic antidepressants: long term treatment increases responsivity of rat forebrain neurons to serotonin. Science, 202, 1303–1306.PubMedCrossRefGoogle Scholar
  12. Dennis, T., Curet, O., Nishikawa, T. and Scatton, B. (1985). Further evidence for, and nature of, the facilitatory GABAergic influence on central noradrenergic transmission. Naunyn-Schmiedeberg’s Arch. Pharmacol., 331, 225–234.CrossRefGoogle Scholar
  13. Gerner, R.H., Fairbanks, L., Andersen, G.M., Young, J.G., Scheinini, M., Linnoila, M., Hare, T.A., Shaywitz, B.A., and Chen, D.J. (1984). CSF neurochemistry in depressed, mania and schizophrenia patients compared with that of normal controls. Am. J. Psychiat., 141, 1533–1540.PubMedCrossRefGoogle Scholar
  14. Gerner, R.H. and Hare, T.A. (1981). CSF GABA in normal subjects and patients with depression, schizophrenia, mania and anorexia nervosa. Am. J. Psychiatry, 138, 1098–1101.PubMedCrossRefGoogle Scholar
  15. Gold, B.I., Bowers, M.B., Roth, R.H. and Sweeney, D.W. (1980). GABA levels in CSF of patients with psychiatric disorders. 137, 362–364.Google Scholar
  16. Harris, M., Hopkins, M. and Neal, M.J. (1973). Effect of centrally acting drugs on the uptake of γ-aminobutyric acid (GABA) by slices of rat cerebral cortex. Brit. J. Pharmacol., 47, 229–239.CrossRefGoogle Scholar
  17. Hill, D.R. (1985). GABA B receptor modulation of adenylate cyclase activity in rat brain slices. Brit. J. Pharmacol. 84, 249–257.Google Scholar
  18. Janowsky, A., Okada, F., Manier, D., Applegate, C.D. and Sulser, F. (1982). Role of serotonergic input in the regulation of the β-adrenergic receptor-coupled adenylate cyclase system. Science, 218, 900–902.PubMedCrossRefGoogle Scholar
  19. Joly, D., Lloyd, K.G., Pichat, P. and Sanger, D.J. (1987). Correlation between the behavioural effect of desipramine and GABA B receptor regulation in olfactory bulbectomised rat. Brit. J. Pharmacol., in press.Google Scholar
  20. Karbon, E.W., Duman, R.S., Enna, S.J. (1984). GABA B receptors and norepinephrine-stimulated cAMP production in rat brain cortex. Brain Res., 306, 327–332.PubMedCrossRefGoogle Scholar
  21. Kasa, K., Otsuki, S., Yamamoto, M. et al (1982). Cerebrospinal fluid γ-aminobutyric acid and homovanillic acid in depressive disorders. Biol. Psychiatry, 17, 877–883.PubMedGoogle Scholar
  22. Korf, J. and Venema, K. (1983). Desmethylimipramine enhances the release of endogenous GABA and other neurotransmitter amino acids from the rat thalamus. J. Neurochem., 40, 946–950.PubMedCrossRefGoogle Scholar
  23. Langer, S.Z., Arbilla, S. Scatton, B., Zivkovic, B., Galzin, A.M., Lloyd, K.G. and Bartholini, G. (1985). Progabide and SL 75 102: Interaction with GABA receptors and effects on neurotransmitter and receptor systems. In Epilepsy and GABA Receptor Agonists: Basic and Therapeutic Research, (L.E.R.S. Monograph Series III) (eds. G. Bartholini, L. Bossi, K.G. Lloyd and P.L. Morselli), Raven Press, New York, 81–90.Google Scholar
  24. Lloyd, K.G. and Pichat, Ph. (1986). Decrease in GABA B binding in the frontal cortex of bulbectomized rats. Brit. J. Pharmac, 87, 36P.Google Scholar
  25. Lloyd, K.G. and Pilc, A. (1984). Chronic antidepressants and GABA B binding sites. Neurosci. Abstr. 10, 117.5.Google Scholar
  26. Lloyd, K.G., Thuret, F., and Pilc, A. (1986). GABA and the mechanism of action of antidepressant drugs. In GABA and Mood Disorders: Experimental and Clinical Research, (L.E.R.S. Monograph Series, IV) (eds. G. Bartholini, K.G. Lloyd and P.L. Morselli). Raven Press, New York, 33–42.Google Scholar
  27. Lloyd, K.G., Thuret, F., and Pilc, A. (1985). Up-regulation of γ-aminobutyric acid (GABA) B binding sites in rat frontal cortex: a common action of repeated administration of different classes of antidepressants and electroshock. J. Pharmac. Exp. Ther. 235, 191–199.Google Scholar
  28. Lloyd, K.G., Morselli, P.L., Depoortere, H., Fournier, V., Zivkovic, B., Scatton, B., Broekkamp, C, Worms, P. and Bartholini, G. (1983). The potential use of GABA agonists in psychiatric disorders: evidence from studies with progabide in animal models and clinical trials. Pharmacol. Biochem. Behav., 18, 957–966.PubMedCrossRefGoogle Scholar
  29. Mishra, R., Janowsky, A. and Sulser, F. (1980). Action of mianserine and zimelidine on the norepinephrine receptor coupled adenylate cyclase system in brain: subsensitivity without reduction in β-adrenergic receptor binding. Neuropharmacol., 19, 983–987.CrossRefGoogle Scholar
  30. Morselli, P.L., Bossi, L., Henry, J.F., Zarifian, E. and Bartholini, G. (1980). On the therapeutic action of SL 76 002, a novel GABAmimetic agent: preliminary observations in neuropsychiatric disorders. Brain Res. Bull. 5 (suppl. 2) 411–414.Google Scholar
  31. Morselli, P.L., Fournier, V., Macher, J.P., Orofiamma, B., Bottin, P. and Huber, P. (1986). Therapeutic action of progabide in depressive illness: a controlled clinical trial. In GABA and Mood Disorders: Experimental and Clinical Research, (eds. G. Bartholini, K.G. Lloyd and P.L. Morselli) (L.E.R.S. Monograph Series, IV)Raven Press, New York, 119–126.Google Scholar
  32. Musch, B. (1986). Antidepressant activity of fengabine (SL 79 229): A critical overview of the present results in open clinical studies. In GABA and Mood Disorders: Experimental and Clinical Research, (L.E.R.S. Monograph Series, IV) (eds. G. Bartholini, K.G. Lloyd and P.L. Morselli), Raven Press, New York, 171–177.Google Scholar
  33. Nishikawa, T. and Scatton, B. (1985a). Inhibitory influence of GABA on central serotonergic transmission. Raphe nuclei as the neuroanatomical site of the GABAergic inhibition of cerebral serotonergic neurons. Brain Res., 331, 91–103.PubMedGoogle Scholar
  34. Nishikawa, T. and Scatton, B. (1985b). Inhibitory influence of GABA on central serotonergic transmission. Involvement of the habenulo-raphe pathways in the GABAergic inhibition of ascending cerebral serotonergic neurons. Brain Res., 331, 81–90.PubMedGoogle Scholar
  35. Olsen, R.W., Ticku, M.K., Van Ness, P.C. and Greenlee, D. (1978). Effects of drugs on γ-aminobutyric acid receptors, uptake, release and synthesis in vitro. Brain Res., 139, 277–294.PubMedCrossRefGoogle Scholar
  36. Petty, F. and Schlesser, M.A. (1981). Plasma GABA in affective disorders. J. Affective Disord., 3, 339–343.CrossRefGoogle Scholar
  37. Petty, F. and Sherman, A.D. (1981). GABAergic modulation of learned helplessness. Pharmacol. Biochem. Behav., 5, 567–570.CrossRefGoogle Scholar
  38. Pilc, A. and Lloyd, K.G. (1984). Chronic antidepressants and GABA receptors: a GABA hypothesis of antidepressant drug action. Life Sci., 35, 2149–2154.PubMedCrossRefGoogle Scholar
  39. Scatton, B., Lloyd, K.G., Zivkovic, B., Dennis, T., Claustre, Y., Dedek, J., Arbilla, S., Langer, S.Z. and Bartholini, G. (1987) Fengabine, a novel antidepressant GABAergic agent.II. Effect on cerebral noradrenergic, serotonergic and GABAergic transmission. J. Pharmacol. Exp. Ther., in press.Google Scholar
  40. Scatton, B., Nishikawa, T., Dennis T., Dedek, J. Curet, O., Zivkovic, B. and Bartholini, G. (1986). GABAergic modulation of central noradrenergic and serotonergic neuronal activity. In GABA and Mood Disorders: Experimental and Clinical Research, (eds. G. Bartholini, K.G. Lloyd and P.L. Morselli), Raven Press, New York, 67–75.Google Scholar
  41. Scatton, B. and Serrano, A. (1986). GABAmimetics increase extracellular DOPAC (as measured by in vivo voltammetry) in the rat locus coeruleus. Naunyn-Schmiedeberg’s Arch. Pharmacol. 332, 380–383.CrossRefGoogle Scholar
  42. Scatton, B., Serrano, A., Rivot, J.P., and Nishikawa, T. (1984). Inhibitory GABAergic influence on striatal serotonergic transmission exerted in the dorsal raphe as revealed by in vivo voltammetry. Brain Res., 305, 343–352.PubMedCrossRefGoogle Scholar
  43. Scatton, B., Zivkovic, B., Dedek, J., Lloyd, K.G., Constantinidis, J., Tissot, R. and Bartholini, G. (1982). γ-Aminobutyric acid (GABA) receptor stimulation.III. Effect of progabide (SL 76 002) on norepinephrine, dopamine and 5-hydroxytryptamine turnover in rat brain areas. J. Pharmacol. Exp. Ther., 220, 678–688.Google Scholar
  44. Sellinger-Barnette, M.M., Mendels, J. and Frazer, A. (1980). The effect of psychoactive drugs on β-adrenergic receptor binding sites in rat brain. Neuropharmacol., 19, 447–454.CrossRefGoogle Scholar
  45. Sherman, A.D., and Petty, F. (1980). Neurochemical basis of the action of antidepressants on learned helplessness. Behav. Neurol. Biol., 30, 119–134.CrossRefGoogle Scholar
  46. Snodgrass, S.R., Hedley-White, E.T. and Lorenzo, A.V. (1973). GABA transport by nerve ending fractions of cat brain. J. Neurochem., 20, 771–782.PubMedCrossRefGoogle Scholar
  47. Sugrue, M.F. (1983). Do antidepressants possess a common mechanism of action? Biochem. Pharmacol., 32, 1811–1817.Google Scholar
  48. Sulser, F. (1984). Regulation and function of noradrenaline receptor systems in brain. Neuropharmacol., 230, 255–261.CrossRefGoogle Scholar
  49. Weiss, E., Brunner, H., Clerc, G., Guibert, M., Orofiamma, B., Pagot, R., Robert, G., Thilliez, D. and Musch, B. (1986). Multicenter double-blind study of progabide in depressed patients. In GABA and Mood Disorders: Experimental and Clinical Research, (L.E.R.S. Monograph Series, IV)’eds. G. Bartholini, K.G. Lloyd and P.L. Morselli). Raven Press, New York, 127–133.Google Scholar
  50. Zivkovic, B., Scatton, B., Dedek, J. and Bartholini, G. (1982). GABA influence in noradrenergic and serotonergic transmissions: implications in mood regulation. In New vistas in depression (eds. S.Z. Langer, R. Takahashi, T. Segawa and M. Briley) Pergamon Press, Oxford, 195–201.Google Scholar
  51. Zivkovic, B., Scatton, B., Sanger, D., Depoortere, H., Dedek, J., Arbilla, S., Langer, S.Z. and Bartholini, G. (1986). The pharmacological and neurochemical spectrum of fengabine SL 79 229, a new antidepressant agent. In GABA and Mood Disorders: Experimental and Clinical Research, (L.E.R.S. Monograph Series, IV) (eds. G. Bartholini, K.G. Lloyd and P.L. Morselli). Raven Press, New York, 85–95.Google Scholar

Copyright information

© The Wenner-Gren Center 1987

Authors and Affiliations

  • Giuseppe Bartholini
  • Kenneth G. Lloyd
  • Bernard Scatton
  • Branimir Zivkovic
  • Paolo L. Morselli

There are no affiliations available

Personalised recommendations