Skip to main content

Membrane Phospholipid Metabolism and Transmitters

  • Chapter
Receptor-Receptor Interactions

Part of the book series: Wenner-Gren Center International Symposium Series ((WGS))

  • 89 Accesses

Abstract

Many neurotransmitters are now known to act by using a ubiquitous signal transduction mechanism based on the hydrolysis of a unique lipid (Downes, 1983; Nahorski et al, 1986). The lipid in question is phosphatidylinositol 4,5-bisphosphate (PtdIns4,5P2) located within the inner leaflet of the plasma membrane where it is stored as a precursor to be used by the receptor mechanism to generate second messengers (Downes & Michell, 1985; Berridge, 1984; Berridge & Irvine, 1984). The transmitters known to operate through this inositol lipid mechanism include acetylcholine (muscarinic), norepinephrine (α1), histamine (H1), 5-hydroxytryptamine (5-HT2), vasopressin (V1), substance P, bradykinin, neurotensin and glutamate. Upon binding its appropriate transmitter, the receptor operates through a GTP-binding protein (Gp) which activates a phosphoinositidase to cleave PtdIns4,5P2 at its phosphodiester bond to release inositol 1,4,5-trisphosphate (Insl,4,5P3) which diffuses into the cytosol leaving diacylglycerol (DG) behind in the membrane. This hydrolysis of PtdIns4,5P2 is a key event in signal transduction because both products give rise to second messengers and thus represents a bifurcation in the signal pathway. The DG functions by stimulating protein kinase C (C-kinase) (Nishizuka, 1986) whereas Ins1,4,5P3 mobilizes calcium (Berridge, 1984; Berridge & Irvine, 1984). In this article I shall attempt to describe how the dual signalling system based on the DG/C-kinase and Ins1,4,5P3/calcium pathways might participate in the control of neural activity. Particular attention will be paid to the role of the DG/C-kinase pathway in carrying our receptor-receptor interactions. Such transmodulation of receptor activity represents one of the major functions of protein kinase C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aghajanian, G.K. (1985). Modulation of a transient outward current in serotonergic neurones by α1-adrenoreceptors. Nature (Lond.) 315, 501–503.

    Google Scholar 

  • Aloyo, V.J., Zwiers, H. & Gispen, W.H. (1983). Phosphorylation of B-50 protein by calcium-activated, phospholipid-dependent protein kinase and B-50 protein kinase. J. Neurochem. 41, 649–653.

    Google Scholar 

  • Authi, K.S., Evenden, B.J. & Crawford, N. (1986). Metabolic and functional consequences of introducing inositol 1,4,5-trisphosphate into saponin-permeabilized human platelets. Biochem. J. 233, 709–718.

    Google Scholar 

  • Baraban, J.M., Snyder, S.H. & Alger, B.E. (1985). Protein kinase C regulates ionic conductance in hippocampal pyramidal neurones: Electrophysiological effects of phorbol esters. Proc. Natl. Acad, Sci. U.S.A. 82, 2538–2542.

    Google Scholar 

  • Batty, I.R., Nahorski, S.R. & Irvine, R.F. (1985). Rapid formation of inositol (1,3,4,5) tetrakisphosphate following muscarinic stimulation of rat cerebral cortical slices. Bioch. J. 232, 211–215.

    Google Scholar 

  • Bell, J.D., Buxton, I.L.O. & Brunton, L.L. (1985). Enhancement of adenylate cyclase activity in S49 lymphoma cells by phorbol esters. J. Biol. Chem. 260, 2625–2628.

    Google Scholar 

  • Berridge, M.J. (1986). An alternative hypothesis of Li+ mode of action based on intervention of the inositol lipid signal pathway. In “Drug Receptors and Dynamic Processes in Cells”, Alfred Benzon Symposium 22, 334–337. (Eds. J.S. Skou, A. Giesler & S. Norn), Munksgaard, Copenhagen.

    Google Scholar 

  • Berridge, M.J. & Irvine, R.F. (1984). Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature (Lond.) 312, 315–321.

    Google Scholar 

  • Brass, L.F. & Joseph, S.K (1985). A role for inositol trisphosphate in intracellular Ca2+ mobilization and granule secretion in platelets. J. Biol. Chem. 260, 15172–15179.

    Google Scholar 

  • Brock, T.A., Rittenhouse, S.E., Powers, C.W., Ekstein, L.S., Gimbrone, M.A. & Alexander, R.W. (). Phorbol ester and 1-oleoyl-2-acetylycerol inhibit angiotensin activation of phospholipase C in cultured vascular smooth muscle cells. J. Biol. Chem. 260, 14158–14162.

    Google Scholar 

  • Brocklehurst, K.W., Morita, K. & Pollard, H.B. (1985). Characterization of protein kinase C and its role in catecholamine secretion from bovine adrenal-medullary cells. Biochem. J. 228, 35–42.

    Google Scholar 

  • Brown, J.E., Rubin, L.J., Ghalayini, A.J., Tarver, A.P., Irvine, R.F., Berridge, M.J. & Anderson, R.E. (1984). Myo-inositol polyphosphate may be a messenger for visual excitation in Limulus photoreceptors. Nature (Lond.) 311, 160–163.

    Google Scholar 

  • Brown, K.D., Dicker, P. & Rozengurt, E. (1979). Inhibition of epidermal growth factors binding to surface receptors by tumor promotors. Biochem. Biophys. Res. Commun. 86, 1037–1043.

    Google Scholar 

  • Burgess, G.M., McKinney, J.S., Irvine, R.F. & Putney, J.W. (1985). Inositol (1,3,4) trisphosphate and inositol (1,4,5) trisphosphe e formation in Ca-mobilizing hormone activated cells. Biochem. J. 232, 237–248.

    Google Scholar 

  • Busa, W.B., Ferguson, J.E., Joseph, S.K., Williamson, J.R. & Nuccitelli, R. (1985). Activation of frog (Xenopus laevis) eggs by inositol trisphosphate. I. Characterization of Ca2+ release from intracellular stores. J. Cell Biol. 101, 677–682.

    Google Scholar 

  • Connolly, T.M., Lawing, W.J. Jnr. & Majerus, P.W. (1986). Protein kinase C phosphorylates human platelet inositol trisphosphate 5 -phosphomonoesterase, increasing phosphatase activity Cell 46, 951–958.

    Google Scholar 

  • Cooper, R.H., Coll, K.E. & Williamson, J.R. (1985). Differential effects of phorbql ester on phenylephrine and vasopressin-induced Ca2+ mobilization in isolated hepatocytes J. Biol. Chem. 260, 3281–3288.

    Google Scholar 

  • Davis, R.J. & Czech, M.P. (1985). Platelet-derived growth factor mimics phorbol diester action on epidermal growth factor receptor phosphorylation at threonine-654. Proc. Natl. Acad. Sci. U.S.A. 82, 4080–4084.

    Google Scholar 

  • De Chaffoy de Courcelles, D., Roevens, P. & Van Belle, H. (1984). 12–0-Tetradecanoylphorbol 13-acetate stimulates inositol lipid phosphorylation in intact human platelets. FEBS 173, 389–393.

    Google Scholar 

  • De Chaffoy de Courcelles, D., Roevens, P. & van Belle, H. (1986). Agents that elevate platelet cAMP stimulate the formation of phosphatidylinositol 4-phosphate in intact human platelets. FEBS Letters 195, 115–118.

    Google Scholar 

  • De Riemer, S.A., Strong, J.A., Albert, K.A., Greengard, P. & Kaczmarek, L.K. (1985). Enhancement of calcium current in Aplysia neurones by phorbol ester and protein kinase C. Nature (Lond.) 313, 313–316.

    Google Scholar 

  • Di Virgilio, F., Pozzan, T., Wollheim, C.B., Vicentini, L.M. & Meldolesi, J. (1986). Tumor promotor phorbol myristate acetate inhibits Ca2+ influx through voltage-gated Ca2+ channels in two secretory cell lines, PC12 and RINmSF. J. Biol. Chem. 261, 32–35.

    Google Scholar 

  • Dougherty, R.W. & Niedel, J.E. (1986). Cytosolic calcium regulates phorbol diester binding affinity in intact phagocytes J. Biol. Chem. 261, 4097–4100.

    Google Scholar 

  • Downes, C.P. (1985) Receptor-dependent generation of intracellular signals from inositol phospholipids in parotid gland and brain. Biochem. Soc. Trans. 13, 1107–1110

    Google Scholar 

  • Downes, C.P. & Michell, R.H. (1985). Inositol phospholipid breakdown as a receptor-controlled generator of second messengers. In Molecular Mechanisms of Transmembrane Signalling P. Cohen & M. Houslay eds pp3-56, Elsevier Science Publishers.

    Google Scholar 

  • Drummond, A.H. (1985). Bidirectional control of cytosolic free calcium by thyrotropin-releasing hormone in pituitary cells. Nature (Lond.) 315, 752–755.

    Google Scholar 

  • Europe-Finner, G.N. & Newell, P.C. (1985). Inositol 1,4,5-trisphosphate induces cyclic GMP formation in Dictyostelium discoideum. Biochem. Biophys. Res. Commun. 130, 1115–1122.

    Google Scholar 

  • Europe-Finner, G.N. & Newell, P.C. (1986). Inositol 1,4,5-trisphosphate and calcium stimulate actin polymerization in Dictyostelium discoidium. J. Cell Sci. 82, 41–51.

    Google Scholar 

  • Evans, M.G. & Marty, A. (1986). Potentiation of muscarinic and α-adrenergic responses by an analogue of guanosine 5’-trisphosphate. Proc. Natl. Acad. Sci. U.S.A. 83, 4099–4103.

    Google Scholar 

  • Fein, A., Payne, R., Corson, D.W., Berridge, M.J. & Irvine, R.F. (1984). Photoreceptor excitation and adaptation by inositol 1,4,5-trisphosphate. Nature (Lond.) 311, 157–160.

    Google Scholar 

  • Fleischman, L.F., Chahwala, S.B. & Cantley, L. (1986). Ras-transformed cells: altered levels of phosphatidylinositol-4,5-bisphosphate and catabolites. Science 231, 407–410.

    Google Scholar 

  • Forsberg, E.J., Rojas, E. & Pollard, H.B. (1986). Muscarinic receptor enhancement of nicotinic-induced catecholamine secretion may be mediated by phosphoinositide metabolism in bovine adrenal chromaffin cells. J. Biol. Chem. 261, 4915–4920.

    Google Scholar 

  • Halenda, S.P. & Feinstein, M.B. (1984). Phorbol myristate acetate stimulates formation of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate in human platelets. Biochem. Biophys, Res. Commun. 124, 507–513.

    Google Scholar 

  • Hallcher, L.M. & Sherman, W.R. (1980). The effects of lithium ion and other agents on the activity of myo-Inositol-1-phosphatase from bovine brain J. Biol. Chem. 255, 1089–1090.

    Google Scholar 

  • Hansen, CA., Mah, S. & Williamson, J.R. (1986). Formation and metabolism of inositol 1,3,4,5-tetrakisphosphate in liver, J. Biol. Chem. 261, 8100–8103.

    Google Scholar 

  • Harris, K.M., Kongsamut, S. & Miller, R.J. (1986). Protein kinase C mediated regulation of calcium channels in PC-12 pheochromocytoma cells. Biochem. Biophys. Res. Commun. 134, 1298–1305.

    Google Scholar 

  • Hesketh, T.R., Moore, J.P., Morris, J.D.H., Taylor, M.V., Rogers, J., Smith, G.A. & Metcalfe, J.C. (1985). A common sequence of calcium and pH signals in the mitogenic stimulation of eukaryotic cells. Nature (Lond) 313, 481–484.

    Google Scholar 

  • Higashida, H. & Brown, D.A. (1986). Two polyphosphoinositide metabolites control two K+-currents in a neuronal cell. Nature (Lond.) 323, 333–335.

    Google Scholar 

  • Higashida, H., Streaty, R.A., Klee, W. & Nirenberg, M. (1986). Bradykinin-activated transmembrane signals are coupled via No or Ni to production of inositol 1,4,5-trisphosphate, a second messenger in N105-15 neuroblastoma-glioma hybrid cells. Proc. Natl. Acad. Sci. U.S.A. 83, 942–946.

    Google Scholar 

  • Hollingsworth, E.B., Sears, E.B. & Daly, J.W. (1985). FEBS Letters 184, 339–342.

    Google Scholar 

  • Hollingworth, E.B. & Daly, J.W. (1985). Accumulation of inositol phosphates and cyclic AMP in guinea-pig cerebral cortical preparations. Biochim. Biophys. Acta. 847, 207–216.

    Google Scholar 

  • Imai, A., Hattori. H., Takahashi, M. & Nozawa Y. (1983). Evidence that cyclic AMP may regulate Ca2+ mobilization and phospholipases in thrombin-stimulated human platelets. Biochem. Biophys. Res. Commun. 112, 693–700.

    Google Scholar 

  • Inoue, T. & Takeda, K. (1984). Prostaglandin-induced inhibition of acetylcholine release from neuronal elements of dog tracheal tissue. J. Physiol 349, 553–570.

    Google Scholar 

  • Irvine, R.F., Anggard, E.A., Letcher, A.J. & Downes, C.P. (1985). Metabolism of inositol (1,4,5) trisphosphate and inositol (1,3,4) trisphosphate in rat parotid glands. Biochem. J. 229, 505–511.

    Google Scholar 

  • Irvine, R.F., Letcher, A.J., Heslop, J.P. & Berridge, M.J. (1986). The inositol tris/tetrakisphosphate pathway-demonstration of Ins(1,4,5)P3-3-kinase activity in animal tissue. Nature (Lond.) 320, 631–635.

    Google Scholar 

  • Irvine, R.F., Letcher, A.J., Lander, D.J. & Downes, C.P. (1984). Inositol trisphosphates in carbachol-stimulated rat parotid glands. Biochem. J. 223, 237–243.

    Google Scholar 

  • Israels, S.J., Robinson, P., Docherty, J.C. & Gerrard, J.M. (1985). Activation of permeabilized platelets by inositol-l,4,5-trisphosphate. Thromb. Res. 40, 499–509.

    Google Scholar 

  • Jolles, J., Zwiers, H., Dekker, A., Wirtz, K.W.A. & Gispen, W.H. (1981). Corticotropin-(l–24)-tetracosapeptide affects protein phosphorylation and polyphosphoinositide metabolism in rat brain. Bioch. J. 194, 283–291.

    Google Scholar 

  • Kaibuchi, K., Takai, Y., Sawamura, M., Hoshijima, M., Fujikura, T. & Nishizuka, Y. (1983). Synergistic functions of protein phosphorylation and calcium mobilization in platelet activation. J. Biol. Chem. 258, 6701–6704.

    Google Scholar 

  • Katada, T., Gilman, A., Watanabe, Y., Bauer, S. & Jacobs, K.H. (1985). Eur. J. Biochem. 151, 431–437.

    Google Scholar 

  • Klockner, U. & Isenberg, G. (2985). Calcium activated potassium currents as an indicator for intracellular (i.c.) Ca-transients. Single smooth muscle cells from trachea and urinary bladder. Pflug. Archiv. 405, R61.

    Google Scholar 

  • Kojima, I., Shibata, H. & Ogata, E. (1986). Phorbol ester inhibits angiotensin-induced activation of phospholipase C in adrenal glomerulosa cells. Biochem. J. 237, 253–258.

    Google Scholar 

  • Labarca, R., Janowsky, A., Patel, J. & Paul, S.M. (1984). Biochem. Biophys. Res. Commun. 123, 703–709.

    Google Scholar 

  • Lapetina, E.G. (1986). Incorporation of synthetic 1,2-diacylglycerol into platelet phosphatidylinositol is increased by cyclic AMP. FEBS Letters 195, 111–114.

    Google Scholar 

  • Lapetina, E.G., Watson, S.P. & Cuatrecasas, P. (1984). myo-Inositol 1,4,5-trisphosphate stimulates protein phosphorylation in saponin-permeabilized human platelets. Proc. Natl. Acad. Sci. U.S.A. 81, 7431–7435.

    Google Scholar 

  • Leeb-Lundberg, L.M.F., Cotecchia, S., Lomasney, J.M., DeBernardis, J.F., Lefkowitz, R.J. & Caron, M.G. (1985). Phorbol esters promote α1-adrenergic receptor phosphorylation and receptor uncoupling from inositol phospholipid metabolism. Proc. Natl. Acad. Sci. U.S.A. 82, 5651–5655.

    Google Scholar 

  • Molina y Vedia, L.M. & Lapetina, E.G. (1986) Phorbol 12,13-dibutyrate and 1-oleyl-2-acetyldiacylglycerol stimulates inositol trisphosphate dephosphorylation in human platelets. J. Biol. Chem. 261, 10493–10495

    Google Scholar 

  • Monaco, M.E. & Mufson, R.A. (1986). Phorbol ester inhibition of the hormone-stimulated phosphoinositide cycle in WRK-1 cells. Biochem. J. 236, 171–175.

    Google Scholar 

  • Moolenaar, W.H., Kruijer, W., Tilly, B.C., Verlaan, I., Bierman, A.J. & de Laat, S.W. (1986). Growth factor like actions of phosphatidic acid. Nature (Lond.) 323, 171–173.

    Google Scholar 

  • Naccache, P.H., Molski, T.F.P., Borgeat, P., White, J.R. & Sha’afi, R.I. (1985). Phorbol esters inhibit the fMet-leu-phe- and leukotriene B4 stimulated calcium mobilization and enzyme secretion in rabbit neurotrophils. J. Biol. Chem. 260, 2125–2131.

    Google Scholar 

  • Nahorski, S.R., Kendall, D.A., & Batty, I. (1986). Receptors and phosphoinositide metabolism in the central nervous system. Biochem. Pharm. 35, 2447–2454.

    Google Scholar 

  • Nakashima, S., Tohmatsu, T., Hattori, H., Okano, Y. & Nozawa, Y. (1986). Inhibitory action of cyclic GMP on secretion, polyphosphoinositide hydrolysis and calcium mobilization in thrombin-stimulated human platelets. Biochem. Biophys. Res. Commun. 135, 1099–1104.

    Google Scholar 

  • Nishizuka, Y. (1984). The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature (Lond.) 308, 693–697.

    Google Scholar 

  • Nishizuka, Y. (1986). Studies and perspectives of protein kinase C. Science 233, 305–312.

    Google Scholar 

  • Orellana, S.A., Solski, P.A. & Brown, J.H. (1985). Phorbol ester inhibits phosphoinositide hydrolysis and calcium mobilization in cultured astrocytoma cells. J. Biol. Chem. 260, 5236–5239.

    Google Scholar 

  • Oron, Y., Dascal, N., Nadler, E. & Lupu, M. (1985). Inositol 1,4,5-trisphosphate mimics muscarinic response in Xenopus oocytes. Nature (Lond.) 313, 141–143.

    Google Scholar 

  • Pozzan, T., Gatti G., Dozio, N., Vicentini, L.M. & Meldolesi, J. (1984). Ca2+ -dependent and -independent release of neurotransmitters from PC12 cells: a role for protein kinase C activation? J. Cell Biol. 99, 628–638.

    Google Scholar 

  • Rapoport, R.M. (1986). Cyclic guanine monophosphate inhibition of contraction may be mediated through inhibition of phosphatidylinositol hydrolysis in rat aorta. Circulation Res. 58, 407–410.

    Google Scholar 

  • Reiser, G. & Hamprecht, B. (1985). Bradykinin causes a transient rise of intracellular Ca -activity in cultured neural cells. Pflugers Archiv. 405, 260–264.

    Google Scholar 

  • Rickard, J.E. & Sheterline, P. (1985). Evidence that phorbol ester interferes with stimulated Ca2+ redistribution by activating Ca efflux in neutrophil leucocytes. Biochem. J. 231, 623–628.

    Google Scholar 

  • Rink, T.J. & Sanchez, A. (1984). Effects of prostaglandins I2 and forskolin on the secretion from platelets evoked at basal concentrations of cytoplasmic free calcium by thrombin, collagen, phorbol ester and exogenous diacylglycerol. Biochem. J. 222, 833–836.

    Google Scholar 

  • Sagi-Eisenberg, R., Lieman, H. & Pecht, I. (1985). Protein kinase C regulation of the receptor-coupled calcium signal in histamine secreting rat basophilic leukaemia cells. Nature (Lond.) 313, 59–60.

    Google Scholar 

  • Shukla, S.D. (1985). Platelet activating factor-stimulated formation of inositol trisphosphate in platelets and its regulation by various agents including Ca2+, indomethacin, CV-3988, and forskolin. Arch. Bioch. Biophys. 240, 674–681.

    Google Scholar 

  • Sibley, D.R., Jeffs, R.A., Daniel, K., Nambi, P. & Lefkowitz, R.J. (1986). Phorbol diester treatment promotes enhanced adenylate cyclase activity in frog erythrocytes. Archiv. Biochem. Biophys. 244, 373–381.

    Google Scholar 

  • Slack, B.E., Bell, J.E. & Benos, D.J. (1986). Inositol-l,4,5-trisphosphate injection mimics fertilization potentials in sea urchin eggs. Am. J. Physiol. 250, C340–C344.

    Google Scholar 

  • Stanfield, P.R., Nakajima, Y. & Yamaguchi, K. (1985). Substance P raises neuronal membrane excitability by reducing inward rectification. Nature (Lond.). 315, 498–501.

    Google Scholar 

  • Stewart, S.J., Prpic, V., Powers, F.S., Bocckino, S.B., Isaaks, R.E. & Exton, J.H. (1986). Perturbation of the human T cell antigen receptor-T3 complex leads to the production of inositol tetrakisphosphate: Evidence for conversion from inositol trisphosphate. Proc. Natl. Acad. Sci. U.S.A. in press.

    Google Scholar 

  • Storey, D.J., Shears, S.B., Kirk, C.J. & Michell, R.H. (1984). Stepwise enzymatic dephosphorylation of inositol 1,4,5-trisphosphate to inositol in liver. Nature (Lond.) 312, 374–376.

    Google Scholar 

  • Sturani, E., Vicentini, L.M., Zippel, R., Toschi, L., Pandiella-Alonso, A., Comoglio, P.M. & Meldolesi, J. (1986). PDGF-induced receptor phosphorylation and phosphoinositide hydrolysis are unaffected by protein kinase C activation in mouse Swiss 3T3 and human skin fibroblasts. Biochim. Biophys. Res. Commun. 137, 343–350.

    Google Scholar 

  • Sugden, D., Vanecek, J., Klein, D.C., Thomas, T.P. & Anderson, W.B. (1985). Activation of protein kinase C potentiates isoprenaline-induced cyclic AMP accumulation in rat pinealocytes. Nature (Lond.) 314, 359–361.

    Google Scholar 

  • Tanaka, C., Taniyama, K. and Kusunoki, M. (1984). A phorbol ester and A23187 act synergistically to release acetylcholine from the guinea pig ileum. FEBS Letters. 175, 165–169

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, C, Fujiwara, H. & Fujii, Y. (1986). Acetylcholine release from guinea pig caudate slices evoked by phorbol ester and calcium, FEBS Letters. 195, 129–134

    Google Scholar 

  • Takai, Y., Kaibuchi, K., Matsubara, T. & Nishizuka, Y. (1981). Inhibitory action of guanine 3’,5’-monophosphate on thrombin-induced phosphatidylinositol turnover and protein phosphorylation in human platelets Bioch. Biophys. Res. Commun. 101, 61–67.

    Google Scholar 

  • Taylor, C.W. & Merritt, J.E. (1986). Receptor coupling to polyphosphoinsitide turnover: A parallel with the adenylate cyclase systems. Trends in Pharmacol. Sci. 7,238–242.

    Google Scholar 

  • Taylor, M.V., Metcalfe, J.C., Hesketh, T.R., Smith, G.A. & Moore, J.P. (1984). Mitogens increase phosphorylation of phosphoinositdes in thymocytes. Nature (Lond.) 312, 462–465.

    Google Scholar 

  • Touqui, L., Rothhut, B., Shaw, A.M., Fradin, A., Vargaftig, B.B. & Russo-Marie, F. (1986). Platelet-activation—a role for a 40K anti-phospholipase A2 protein indistinguishable from lipocortin Nature (Lond.) 321, 177–180.

    Google Scholar 

  • Trevisani, A., Biondi, C., Bulluzzi, O., Borasio, P.G., Cappuzzo, A., Ferretti, M.E. & Perri, V. (1982). Evidence for increased release of prostaglandins of E-type in response to orthodromic stimulation in the guinea-pig superior cervical ganglion. Brain Res. 236, 375–381.

    Google Scholar 

  • Turner, P.R., Jaffe, L.A. & Fein, A. (1985). Regulation of cortical vesicle exocytosis in sea urchin eggs by inositol 1,4,5-trisphosphate and GTP-binding protein. J. Cell Biol. 102, 70–76.

    Google Scholar 

  • Vergara, J., Tsien, R.Y. & Delay, M. (1985). Inositol 1,4,5-trisphosphate: A possible chemical link in excitation-contraction coupling in muscle. Proc. Natl. Acad. Sci. U.S.A. 82, 6352–6356.

    Google Scholar 

  • Volpe, P., Salviati, G., Di Virgilio, F. & Pozzan, T. (1985). Inositol 1,4,5-trisphosphate induces calcium release from sarcoplasmic reticulum of skeletal muscle. Nature (Lond.) 316, 347–349.

    Google Scholar 

  • Watson, S.P., McConnell, R.T. & Lapetina, E.G. (1984). The rapid formation of inositol phosphates in human platelets by thrombin is inhibited by prostacyclin. J. Biol. Chem. 259, 13199–13203.

    Google Scholar 

  • Watson, S.P., Ruggiero, M., Abrahams, S.L. & Lapetina, E.G. (1986). Inositol 1,4,5-trisphosphate induces aggregation and release of 5-hydroxytrypamine from saponin-permeabilized human platelets. J. Biol. Chem. 261, 5368–5372.

    Google Scholar 

  • Whitaker, M. & Irvine, R.F. (1984). Inositol 1,4,5-trisphosphate microinjection activates sea urchin eggs. Nature (Lond.) 312, 636–639.

    Google Scholar 

  • Yamanishi, J., Takai, Y., Kaibuchi, K., Sano, K., Castagna, M. & Nishizuka, Y. (1983). Synergistic functions of phorbol ester and calcium in serotonin release from human platelets. Biochem. Biophys. Res. Commun. 112, 778–786.

    Google Scholar 

  • Yano, K., Higashida, H., Hattori, H. & Zozawa, Y. (1985). Bradykinin-induced transient accumulation of inositol trisphosphate in neuron-like cell line NG 108–15 cells. FEBS Letters 181, 403–406.

    Google Scholar 

  • Yano, K., Higashida, H., Inoue, R. & Nozawa, Y. (1984). Bradykinin-induced rapid breakdown of phosphatidylinositol 4,5-bisphosphate in neuroblastoma x glioma hybrid NG 108–15 cells. J. Biol. Chem. 259, 10201–10207.

    Google Scholar 

  • Zavoico, G.B. & Feinstein, M.B. (1984). Cytoplasmic Ca2+ in platelets is controlled by cyclic AMP: Antagonism between stimulators and inhibitors of adenylate cyclase. Biochem. Biophys. Res. Commun. 120, 579–585.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1987 The Wenner-Gren Center

About this chapter

Cite this chapter

Berridge, M.J. (1987). Membrane Phospholipid Metabolism and Transmitters. In: Fuxe, K., Agnati, L.F. (eds) Receptor-Receptor Interactions. Wenner-Gren Center International Symposium Series. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-08949-9_13

Download citation

Publish with us

Policies and ethics