Hexane Neuropathy: Studies in Experimental Animals and Man

  • Anthony P. DeCaprio


n-Hexane is a straight-chain hydrocarbon solvent which currently enjoys wide industrial and commercial application. The US National Institute of Occupational Safety and Health (NIOSH) has estimated that over 2 million workers per year in the US are exposed to significant levels of n-hexane in the course of their workday (NIOSH, 1977). NIOSH has also named more than 40 industrial classifications and processes in which n-hexane is commonly employed. A discussion of n-hexane neurotoxicity must necessarily include the two related compounds methyl n-butyl ketone (MnBK) and 2,5-hexanedione (2,5-HD) (figure 10.1). All three compounds produce an identical neurotoxic syndrome and differ only in their relative potencies as neurotoxic agents. MnBK is itself a useful solvent, while 2,5-HD has only minor commercial use.


Sciatic Nerve Methyl Ethyl Ketone Methyl Ethyl Ketone Giant Axonal Neuropathy Butyl Ketone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aamodt, E. J. and Williams, R. C. (1984). Microtubule-associated proteins connect microtubules and neurofilaments in vitro. Biochemistry, 23, 6031–5Google Scholar
  2. Abdel-Rahman, M. S., Hetland, L. B. and Couri, D. (1976). Toxicity and metabolism of methyl n-butyl ketone. Am. Ind. Hyg. Assoc. J., 37, 95–102PubMedCrossRefGoogle Scholar
  3. Allen, N., Mendell, J. R., Billmaier, D. J., Fontaine, R. E. and O’Neill, J. (1975). Toxic polyneuropathy due to methyl n-butyl ketone: An industrial outbreak. Arch. Neurol., 32, 209–18PubMedCrossRefGoogle Scholar
  4. Altenkirch, H., Mager, J., Stoltenburg, G. and Helmbrecht, J. (1977). Toxic poly-neuropathies after sniffing a glue thinner. J. Neurol., 214, 137–52Google Scholar
  5. Altenkirch, H., Wagner, H. M., Stoltenburg-Didinger, G. and Steppat, R. (1982). Potentiation of hexacarbon-neurotoxicity by methyl-ethyl-ketone (MEK) and other substances: Clinical and experimental aspects. Neurobehav. Toxicol Teratol., 4, 623–1PubMedGoogle Scholar
  6. Anthony, D. C., Boekelheide, K. and Graham, D. G. (1983a). The effect of 3,4-dimethyl substitution on the neurotoxicity of 2,5-hexanedione. I. Accelerated clinical neuropathy is accompanied by more proximal axonal swellings. Toxicol. appl. Pharmacol., 71, 362–71PubMedCrossRefGoogle Scholar
  7. Anthony, D. C., Boekelheide, K., Anderson, C. W. and Graham, D. G. (1983b). The effect of 3,4-dimethyl substitution on the neurotoxicity of 2,5-hexane-dione. H. Dimethyl substitution accelerates pyrrole formation and protein crosslinking. Toxicol. appl. Pharmacol., 71, 372–82PubMedCrossRefGoogle Scholar
  8. Billmaier, D., Vee, H. T., Allen, N., Craft, B., Williams, N., Epstein, S. and Fontaine, R. (1974). Peripheral neuropathy in a coated fabrics plant. J. Occup. Med., 16, 665–71PubMedGoogle Scholar
  9. Cavanagh, J. B. (1982). The pattern of recovery of axons in the nervous system of rats following 2,5-hexanediolintoxication: A question of rheology? Neuropathol. appl. Neurobiol., 8, 19–34Google Scholar
  10. Cavanagh, J. B. and Bennetts, J. B. (1981). On the pattern of changes in the rat nervous system produced by 2,5-hexanediol: A topographical study by light microscopy. Brain, 104, 297–318PubMedCrossRefGoogle Scholar
  11. Chio, K. S. and Tappel, A. L. (1969). Synthesis and characterization of the fluorescent products derived from malonaldehyde and amino acids. Biochemistry, 8, 2821–7PubMedCrossRefGoogle Scholar
  12. Couri, D. and Nachtman, J. P. (1979). Biochemical and biophysical studies of 2,5-hexanedione neuropathy. Neurotoxicology, 1, 269–83Google Scholar
  13. Couri, D., Abdel-Rahman, M. S. and Hetland, L. B. (1978). Biotransformation of n-hexane and methyl n-butyl ketone in guinea pigs and mice. Am. Ind. Hyg. Assoc. J., 39, 295–300PubMedCrossRefGoogle Scholar
  14. DeCaprio, A. P. (1984). Molecular mechanisms of n-hexane neurotoxicity. In: Proc. 14th Ann. Conf. Environ. Toxicol, Dayton, Ohio. AFAMRL-TR-83–099, pp.40–59Google Scholar
  15. DeCaprio, A. P. (1985). Molecular mechanisms of diketone neurotoxicity. Chem-Biol. Interact., 54, 257–70PubMedCrossRefGoogle Scholar
  16. DeCaprio, A. P. and O’Neill, E. A. (1985). Alterations in rat axonal cytoskeletal proteins induced by in vitro and in vivo 2,5-hexanedione exposure. Toxicol. appl. Pharmacol., 78, 235–47PubMedCrossRefGoogle Scholar
  17. DeCaprio, A. P. and Weber, P. (1980). In vitro studies on the amino group reactivity of a neurotoxic hexacarbon solvent. Pharmacologist, 22, 222Google Scholar
  18. DeCaprio, A. P. and Weber, P. (1981). Conversion of lysine e-amino groups to substituted pyrrole derivatives by 2,5-hexanedione: A possible mechanism of protein binding. Toxicologist, 1, 134Google Scholar
  19. DeCaprio, A. P., Olajos, E. J. and Weber, P. (1982). Covalent binding of a neurotoxic n-hexane metabolite: Conversion of primary amines to substituted pyrrole adducts by 2,5-hexanedione. Toxicol. appl. Pharmacol., 65, 440–50PubMedCrossRefGoogle Scholar
  20. DeCaprio, A. P., Strominger, N. L. and Weber, P. (1983). Neurotoxicity and protein binding of 2,5-hexanedione in the hen. Toxicol. appl. Pharmacol., 68, 297–307PubMedCrossRefGoogle Scholar
  21. DiVincenzo, G. D., Kaplan, C. J. and Dedinas, J. (1976). Characterization of the metabolites of methyl n-butyl ketone, methyl iso-butyl ketone, and methyl ethyl ketone in guinea pig serum and their clearance. Toxicol. appl. Pharmacol., 36, 511–22PubMedCrossRefGoogle Scholar
  22. DiVincenzo, G. D., Hamilton M. L., Kaplan, C. J. and Dedinas, J. (1977). Metabolic fate and disposition of 14C-labelled methyl n-butyl ketone in the rat. Toxicol. appl. Pharmacol., 41, 547–60PubMedCrossRefGoogle Scholar
  23. DiVincenzo, G. D., Zeigler, D. A., O’Donoghue, J. L. and Krasavage, W. J. (1982). Possible role of metabolism in 5-nonanone neurotoxicity. Neurotoxicology, 3, 55–63PubMedGoogle Scholar
  24. Duckett, S., Williams, N. and Francis, S. (1974). Peripheral neuropathy associated with inhalation of methyl n-butyl ketone. Experentia, 30, 1283–4CrossRefGoogle Scholar
  25. Ellisman, M. H. and Porter, K. R. (1980). Microtrabecular structure of the axo-plasmic matrix: Visualization of cross-linking structures and their distribution. J. Cell. Biol., 87, 464–79PubMedCrossRefGoogle Scholar
  26. Geisler, N., Kaufmann, E., Fischer, S., Plessmann, U. and Weber, P. (1983). Neuro-filament architecture combines structural principles of intermediate filaments with carboxy-terminal extensions increasing in size between triplet proteins. EMBO. J., 2, 1295–1302PubMedPubMedCentralGoogle Scholar
  27. Gillies, P. J., Norton, R. M. and Bus, J. S. (1980). Effect of 2,5-hexanedione on lipid biosynthesis in sciatic nerve and brain of the rat. Toxicol. appl. Pharmacol., 54, 210–16PubMedCrossRefGoogle Scholar
  28. Goto, I., Matsumara, M., Inoue, N., Murai, Y., Shida, K., Santa, T. and Ruroiwa, Y. (1974). Toxic polyneuropathy due to glue sniffing. J. Neurol. Neurosurg. Psych., 37, 848–53CrossRefGoogle Scholar
  29. Graham, D. G. (1980). Hexane polyneuropathy: A proposal for the pathogenesis of a hazard of occupational exposure and inhalant abuse. Chem.-Biol. Interact., 32, 339–45PubMedCrossRefGoogle Scholar
  30. Graham, D. G. and Abou-Donia, M. B. (1980). Studies of the molecular pathogenesis of hexane neuropathy. I. Evaluation of the inhibition of glyceraldehyde-3-phosphate dehydrogenase by 2,5-hexanedione. J. Toxicol. Environ. Hlth, 6, 621–31CrossRefGoogle Scholar
  31. Graham, D. G., Anthony, D. C, Boekelheide, K., Maschmann, N. A., Richards, R. G., Wolfram, J. W. and Shaw, B. R. (1982a). Studies of the molecular pathogenesis of hexane neuropathy. II. Evidence that pyrrole derivatization of lysyl residues leads to protein crosslinking. Toxicol appl Pharmacol, 64, 415–22PubMedCrossRefGoogle Scholar
  32. Graham, D. G., Anthony, D. C. and Boekelheide, K. (1982b). In vitro and in vivo studies of the molecular pathogenesis of n-hexane neuropathy. Neurobehav. Toxicol Teratol, 4, 629–34PubMedGoogle Scholar
  33. Graham, D. G., Szakal-Quin, G., Priest, J. W. and Anthony, D. C. (1984). In vitro evidence that covalent crosslinking of neurofilaments occurs in γ-diketone neuropathy. Proc. Nat. Acad. Sci. USA, 81, 4979–82PubMedPubMedCentralCrossRefGoogle Scholar
  34. Griffin, J. W., Price, D. L. and Spencer, P. S. (1977). Fast axonal transport through giant axonal swellings in hexacarbon neuropathy. J. Neuropathol. Exp. Neurol., 36, 603Google Scholar
  35. Griffin, J. W., Fahnestock, K. E., Price, D. L. and Cork, L. C. (1983). Cytoskeletal disorganization induced by local application of β,β‵-iminodipropionitrile and 2,5-hexanedione. Ann. Neurol., 14, 55–61PubMedCrossRefGoogle Scholar
  36. Griffiths, I. R., Kelly, P. A. T., Carmichael, S., McCulloch, M. and Waterston, M. (1981). The relationship of glucose utilization and morphological change in the visual system in hexacarbon neuropathy. Brain Res., 222, 447–51PubMedCrossRefGoogle Scholar
  37. Howland, R. D., Vyas, I. L., Lowndes, H. E. and Argentiers, T. M. (1980). The etiology of toxic peripheral neuropathies: In vitro effects of acrylamide and 2,5-hexanedione on brain enolase and other glycolytic enzymes. Brain Res., 202, 131–42PubMedCrossRefGoogle Scholar
  38. Jones, H. B. and Cavanagh, J. B. (1982). Recovery from 2,5-hexanediol intoxication of the retinotectal tract of the rat. An ultrastructural study. Acta Neuropathol., 58, 286–90PubMedCrossRefGoogle Scholar
  39. Jones, H. B. and Cavanagh, J. B. (1983). Distortions in the nodes of Ranvier from axonal distention by filamentous masses in hexacarbon intoxication. J. Neuro-cytol., 12, 439–589Google Scholar
  40. Jones, R. A. and Bean, G. P. (1977). The Chemistry of Pyrroles, Academic Press, New YorkGoogle Scholar
  41. Julien, J. P. and Mushynski, W. E. (1982). Multiple phosphorylation sites in mammalian neurofilament polypeptides. J. Biol Chem., 257, 10467–70PubMedGoogle Scholar
  42. Lasek, R. J. and Hoffman, P. N. (1976). The neuronal cytoskeleton, axonal transport and axonal growth. In: Cell Motility (eds R. Golden, T. Pollard and J. Rosenbaum),. Cold Spring Harbor Conf. Cell Proliferation, Vol. 3, Cold Spring Harbor Laboratory, New York, pp. 1021–49Google Scholar
  43. LoPachin, R. M., Moore, R. W., Menahan, L. A. and Peterson, R. E. (1984).Google Scholar
  44. Glucose-dependent lactate production by homogenates of neuronal tissues prepared from rats treated with 2,4-dithiobiuret, acrylamide, p-bromophenylacetylurea, and 2,5-hexanedione. Neurotoxicology, 5, 25–36Google Scholar
  45. Mendell, J. R. and Sahenk, Z. (1980). Interference of neuronal processing and axoplasmic transport by toxic chemicals. Experimental and Clinical Neurotoxicology, (eds P. S. Spencer and H. H. Schaumburg), William and Wilkins, Baltimore, pp. 139–60Google Scholar
  46. Mendell, J. R., Saida, K., Ganansia, M. F., Jackson, D. B., Weiss, H., Gardier, R. W., Chrisman, C., Allen, N., Couri, D., O’Neill, J., Marks, B. and Hetland, L. (1974). Toxic polyneuropathy produced by methyl n-butyl ketone. Science, 185, 787–9PubMedCrossRefGoogle Scholar
  47. Mennear, J. H. (1982). A short-lived effect of 2,5-hexanedione on thermal perception in mice. Toxicol. appl. Pharmacol., 62, 205–10PubMedCrossRefGoogle Scholar
  48. Monaco, S., Autilio-Gambetti, L., Zabel, D. and Gambetti, P. (1985). Giant axonal neuropathy: acceleration of neurofilament transport in optic axons. Proc. Nat. Acad. Sci. (USA), 82, 920–4CrossRefGoogle Scholar
  49. NIOSH (1977). Occupational exposure to alkanes (C5–C8). DHEW Publication No. 77-151, Government Publication Office, Washington, D.C.Google Scholar
  50. O’Donoghue, J. L. and Krasavage, W. J. (1979). Hexacarbon neuropathy: A γ-di-ketone neuropathy? J. Neuropatho. Exp. Neurol., 38, 333Google Scholar
  51. Pena, S. D. J. (1982) Giant axonal neuropathy: An inborn error of organization of intermediate filaments. Muscle Nerve, 5, 166–72PubMedCrossRefGoogle Scholar
  52. Politis, M. J., Pelligrino, R. G. and Spencer, P. S. (1980). Ultrastructural studies of the dying-back process. V. Axonal neurofilaments accumulate at sites of 2,5-hexanedione application: Evidence for nerve fiber dysfunction in experimental hexacarbon neuropathy. J. Neurocytol., 9, 505–16PubMedCrossRefGoogle Scholar
  53. Powell, H. C, Koch, T., Garrett, R. and Lampert, P. W. (1978). Schwann cell abnormalities in 2,5-hexanedione neuropathy. J. Neurocytol., 7, 517–28PubMedCrossRefGoogle Scholar
  54. Ralston, W. H., Hilderbrand, R. L., Uddin, D. E., Andersen, M. E. and Gardier, R. W. (1985). Potentiation of 2,5-hexanedione neurotoxicity by methyl ethyl ketone. Toxicol. appl. Pharmacol., 81, 319–27PubMedCrossRefGoogle Scholar
  55. Sabri, M. I. (1984a). In vitro effect of n-hexane and its metabolites on selected enzymes in glycolysis, pentose phosphate pathway and citric acid cycle. Brain Res., 297, 145–50PubMedCrossRefGoogle Scholar
  56. Sabri, M. I. (1984b). Further observations on in vitro and in vivo effects of 2,5-hexanedione on glyceraldehyde-3-phosphate dehydrogenase. Arch. Toxicol., 55, 191–4PubMedCrossRefGoogle Scholar
  57. Sabri, M. I. and Spencer, P. S. (1981). Sites of 2,5-hexanedione binding in mammalian peripheral nerve. Soc. Neurosci. Abstr., 7, 601Google Scholar
  58. Sabri, M. I., Moore, C. L. and Spencer, P. S. (1979a). Studies on the biochemical basis of distal axonopathies. I. Inhibition of glycolysis by neurotoxic hexacarbon compounds. J. Neurochem., 32, 683–9PubMedCrossRefGoogle Scholar
  59. Sabri, M. I., Ederle, K., Holdsworth, C. E. and Spencer, P. S. (1979b). Studies on the biochemical basis of distal axonopathies. II. Specific inhibition of fructose-6-phosphate kinase by 2,5-hexanedione and methyl butyl ketone. Neurotoxicology, 1, 285–97Google Scholar
  60. Sahenk, Z. and Mendell, J. R. (1983). Studies on the morphologic alterations of axonal membranous organelles in neurofilamentous neuropathies. Brain Res., 268, 239–48PubMedCrossRefGoogle Scholar
  61. Sayre, L. M., Autilio-Gambetti, L. and Gambetti, P. (1985). Pathogenesis of experimental giant neurofilamentous axonopathies: A unified hypothesis based on chemical modification of neurofilaments. Brain Res. Rev., 10, 69–83CrossRefGoogle Scholar
  62. Schaumburg, H. H. and Spencer, P. S. (1976). Degeneration in central and peripheral nervous systems produced by pure n-hexane: An experimental study. Brain, 99, 183–92PubMedCrossRefGoogle Scholar
  63. Spencer, P. S. and Schaumburg, H. H. (1975). Experimental neuropathy produced by 2,5-hexanedione — A major metabolite of the neurotoxic industrial solvent methyl n-butyl ketone. J. Neurol Neurosurg. Psych., 38, 771–5CrossRefGoogle Scholar
  64. Spencer, P. S. and Schaumburg, H. H. (1976). Central-peripheral distal axonopathy — The pathology of dying-back polyneuropathies. In: Progress in Neuro-pathology, Vol. 3, (ed. H. Zimmerman), Grune and Stratton, New York, pp. 253–95Google Scholar
  65. Spencer, P. S. and Schaumburg, H. H. (1977a). Ultrastructural studies of the dying-back process. III. The evolution of experimental peripheral giant axonal degeneration. J. Neuropathol. Exp. Neurol., 36, 276–99PubMedCrossRefGoogle Scholar
  66. Spencer, P. S. and Schaumburg, H. H. (1977b). Ultrastructural studies of the dying-back process. IV. Differential vulnerability of PNS and CNS fibers in experimental central-peripheral distal axonopathies. J. Neuropathol. Exp. Neurol., 36, 300–20PubMedCrossRefGoogle Scholar
  67. Spencer, P. S. and Schaumburg, H. H. (1978). Pathobiology of neurotoxic axonal degeneration. In: Physiology and Pathobiology of Axons (ed. S. G. Waxman), Raven Press, New York, pp. 265–82Google Scholar
  68. Spencer, P. S., Bischoff, M. C. and Schaumburg, H. H. (1978). On the specific molecular configuration of neurotoxic aliphatic hexacarbon compounds causing central-peripheral distal axonopathy. Toxicol. appl. Pharmacol., 44, 17–28PubMedCrossRefGoogle Scholar
  69. Spencer, P. S., Sabri, M. I., Schaumburg, H. H. and Moore, C. L. (1979). Does a defect of energy metabolism in the nerve fiber underlie axonal degeneration in polyneuropathies? Ann. Neurol., 5, 501–7Google Scholar
  70. Spencer, P. S., Schaumburg, H. H., Sabri, M. I. and Veronesi, B. (1980). The enlarging view of hexacarbon neurotoxicity. CRC Crit. Rev. Toxicol., 4, 279–356CrossRefGoogle Scholar
  71. Spencer, P. S., Miller, M. S., Ross, S. M., Schwab, B. W. and Sabri, M. I. (1985). Biochemical mechanisms underlying primary degeneration of axons. In: Handbook of Neurochemistry, Vol. 9 (ed. A. Lajtha), Plenum Press, New York, pp. 31–65Google Scholar
  72. Veronesi, B., Peterson, E. R., Bornstein, M. B. and Spencer, P. S. (1983). Ultra-structural studies of the dying-back process. VI. Examination of nerve fibers undergoing giant axonal degeneration in organotypic culture. J. Neuropathol Exp. Neurol, 42, 153–65PubMedCrossRefGoogle Scholar
  73. Yamada, S. (1967). Intoxication polyneuritis in the workers exposed to n-hexane. Japan J. Ind. Hlth, 9, 651–9Google Scholar
  74. Yamamura, Y. (1969). n-Hexane polyneuropathy. Folia Psych. Neurol Japan, 23, 45–57Google Scholar
  75. Zagoren, J. C., Politis, M. J. and Spencer, P. S. (1983). Rapid reorganization of the axonal cytoskeleton induced by a gamma-diketone. Brain Res., 270, 162–4PubMedCrossRefGoogle Scholar

Copyright information

© Anthony P. DeCaprio 1987

Authors and Affiliations

  • Anthony P. DeCaprio

There are no affiliations available

Personalised recommendations