Skip to main content

A Glycoprotein from Muscle-conditioned Medium Involved in the Differentiation of Rat Cholinergic Neurons in Culture: Partial Purification and Regulation of Neurotransmitter Metabolism Enzymes in Central-Nervous-System Cultures

  • Chapter
Book cover New Concepts in Alzheimer’s Disease

Abstract

The identification, purification and study of the mode of action of macro-molecular factors responsible for the survival, neurite outgrowth and differentiation of neurons in culture is nowadays a field of intense research (for a review, see Berg, 1985). Cell culture systems can indeed constitute valuable biological assays for the identification of neuronotrophic factors in various biological fluids or tissue homogenates. Except for nerve growth factor (NGF), the role played by these factors during in vivo development or ageing is still unknown, but they are good candidates for the mediation of retrograde trophic interactions between defined groups of neurons and their field of innervation. A defect in such retrograde factors may be involved in certain degenerative neurological diseases, such as motor neuron disease or Alzheimer’s disease (see Chapters 13, 14 and 16).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baccaglini, P. L., and Cooper, E. (1982). Electrophysiological studies of new-born rat nodose neurones in cell culture. J. Physiol. (Lond.), 324, 429–39.

    Article  CAS  Google Scholar 

  • Berg, D. K. (1978). Acetylcholine synthesis by chick spinal cord neurons in dissociated cell culture. Dev. Biol., 66, 500–12.

    Article  CAS  PubMed  Google Scholar 

  • Berg, D. K. (1985). New neuronal growth factors. Ann. Rev. Neurosci., 7, 149–70.

    Article  CAS  Google Scholar 

  • Cooper, E. L. (1984). Synapse formation among developing sensory neurones from rat nodose ganglia grown in tissue culture. J. Physiol. (Lond.), 351, 263–74.

    Article  CAS  Google Scholar 

  • Ellman, G. L., Courtney, K. D., Andres, V., and Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 7, 88–95.

    Article  CAS  PubMed  Google Scholar 

  • Fonnum, F. (1975). A rapid radiochemical method for the determination of choline acetyltransferase. J. Neurochem., 24, 407–9.

    Article  CAS  PubMed  Google Scholar 

  • Fukada, K. (1985). Purification and partial characterization of a cholinergic neuronal differentiation factor. Proc. Natl Acad. Sci. USA, 82, 8795–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giess, M. C., and Weber, M. J. (1984). Acetylcholine metabolism in rat spinal cord cultures: regulation by a factor involved in the determination of the neurotransmitter phenotype of sympathetic neurons. J. Neurosci., 4, 1442–52.

    CAS  PubMed  Google Scholar 

  • Giller, E. L., Schrier, B. K. Shainberg, A., Fisk, H. R., and Nelson, P. G. (1973). Choline acetyltransferase activity is increased in combined cultures of spinal cord and muscle cells from mice. Science, 182, 588–9.

    Article  CAS  PubMed  Google Scholar 

  • Giller, E. L., Neal, J. H., Bullock, P. N., Schrier, B. K., and Nelson, P. G. (1977). Choline acetyltransferase activity of spinal cord cell cultures increased by co-culture with muscle and by muscle-conditioned medium. J. Cell Biol., 74, 16–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gnahn, H., Hefti, F., Heumann, R., Schwab, M. E., and Thoenen, H. (1983). NGF-mediated increase of choline acetyltransferase (ChAT) in the neonatal rat forebrain: evidence for a physiological role of NGF in the brain? Dev. Brain Res., 9, 45–52.

    Google Scholar 

  • Godfrey, E. W., Schrier, B. K., and Nelson, P. G. (1980). Source and target cell specificities of a conditioned medium factor that increases choline acetyltransferase activity in cultured spinal cord cells. Dev. Biol., 77, 403–18.

    Article  CAS  PubMed  Google Scholar 

  • Hefti, F., Hartikka, J., Eckenstein, F., Gnahn, H., Heumann, R., and Schwab, M. (1985). Nerve growth factor (NGF) increases choline acetyltransferase, but not survival of fiber outgrowth of cultured septal cholinergic neurons. Neuroscience, 14, 55–68.

    Article  CAS  PubMed  Google Scholar 

  • Honegger, P., and Lenoir, D. (1982). Nerve growth factor (NGF) stimulation of cholinergic telencephalic neurons in aggregating cell cultures. Dev. Brain Res., 3, 229–38.

    Article  CAS  Google Scholar 

  • Katz, D. M., Markey, K. A., Goldstein, M., and Black, I. B. (1983). Expression of catecholaminergic characteristics by primary sensory neurons in the normal adult rat in vivo. Proc. Natl Acad. Sci. USA, 80, 3526–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamprecht, F., and Coyle, J. T. (1972). Dopa decarboxylase in the developing rat brain. Brain Res., 41, 503–6.

    Article  CAS  PubMed  Google Scholar 

  • Landis, S. C. (1976). Rat sympathetic neurons and cardiac myocytes developing in microcultures: correlation of the fine structure of endings with neurotransmitter function in single neurons. Proc. Natl Acad. Sci. USA, 73, 4220–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landis, S. C. (1980). Developmental changes in the neurotransmitter properties of dissociated sympathetic neurons: a cytochemical study of the effects of medium. Dev. Biol., 77, 349–61.

    Article  CAS  PubMed  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randal, R. J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193, 265–75.

    CAS  PubMed  Google Scholar 

  • Martin, R. G., and Ames, N. A. (1961). A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J. Biol. Chem., 236, 1372–9.

    CAS  PubMed  Google Scholar 

  • Mathieu, C., Moisand, A., and Weber, M. J. (1984). Acetylcholine metabolism by cultured neurons from rat nodose ganglia: regulation by a macromolecule from muscle-conditioned medium. Neuroscience, 13, 1373–86.

    Article  CAS  PubMed  Google Scholar 

  • Patterson, P. H. (1978). Environmental determination of autonomic neurotransmitter functions. Ann. Rev. Neurosci., 1, 1–17.

    Article  CAS  PubMed  Google Scholar 

  • Patterson, P. H., and Chun, L. L. Y. (1977a). The induction of acetylcholine synthesis in primary cultures of dissociated rat sympathetic neurons. I. Effects of conditioned medium. Dev. Biol., 56, 263–80.

    Article  CAS  PubMed  Google Scholar 

  • Patterson, P. H., and Chun, L. L. Y. (1977b). The induction of acetylcholine synthesis in primary cultures of dissociated rat sympathetic neurons. II. Developmental aspects. Dev. Biol, 60, 473–81.

    Article  CAS  PubMed  Google Scholar 

  • Potter, D. D., Landis, S. C., and Furshpan, E. J. (1980). Dual function during development of rat sympathetic neurons in culture. J. exp. Biol., 89, 57–71.

    CAS  PubMed  Google Scholar 

  • Potter, D. D., Landis, S. C., and Furshpan, E. J. (1981). Adrenergic-cholinergic dual function in cultured sympathetic neurons of the rat. In Development of the Autonomic Nervous Systems, Ciba Foundation Symposium 83, pp. 123–38.

    Google Scholar 

  • Siegel, L. M., and Monty, K. J. (1966). Determination of molecular weight and frictional ratios of proteins in impure systems by use of gel filtration and density gradient centrifugation. Application to crude preparations of sulfite and hydroxylamine reductases. Biochim. Biophys. Acta., 112, 346–62.

    Article  CAS  PubMed  Google Scholar 

  • Swerts, J. P., Le Van Thai, A., and Weber, M. S. (1984). Regulation of enzymes responsible for neurotransmitter synthesis and degradation in cultured rat sympathetic neurons. I: Regulation of 16S acetylcholinesterase by conditioned medium. Dev. Biol., 103, 230–4.

    Article  CAS  PubMed  Google Scholar 

  • Swerts, J. P., Le Van Thai, A., Vigny, A., and Weber, M. J. (1983). Regulation of enzymes responsible for neurotransmitter synthesis and degradation in cultured rat sympathetic neurons. I. Effects of muscle conditioned medium. Dev. Biol., 100, 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Wallace, L. J., and Partlow, L. M. (1978). A sensitive microassay for protein in cells cultured on collagen. Anal. Biochem., 87, 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Weber, M. (1981). A diffusible factor responsible for the determination of cholinergic functions in cultured sympathetic neurons. Partial purification and characterization. J. Biol. Chem., 256, 3447–53.

    CAS  PubMed  Google Scholar 

  • Weber, M. J., and Le Van Thai, A. (1982). Progress in the purification of a factor involved in the neurotransmitter choice made by cultured sympathetic neurons. In Burger, M. M., and Weber, R. (eds.), Embryonic Development. A. R. Liss, New York, 85B, pp. 473–83.

    Google Scholar 

  • Weber, M. J., Raynaud, B., and Delteil, C. (1985). Molecular properties of a cholinergic differentiation factor from muscle-conditioned medium. J. of Neurochem., 45, 1541–7.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1986 The Editors and the Contributors

About this chapter

Cite this chapter

Giess, M.C. et al. (1986). A Glycoprotein from Muscle-conditioned Medium Involved in the Differentiation of Rat Cholinergic Neurons in Culture: Partial Purification and Regulation of Neurotransmitter Metabolism Enzymes in Central-Nervous-System Cultures. In: Briley, M., Kato, A., Weber, M. (eds) New Concepts in Alzheimer’s Disease. Palgrave, London. https://doi.org/10.1007/978-1-349-08639-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-08639-9_15

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-08641-2

  • Online ISBN: 978-1-349-08639-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics