An Immunohistochemical Study Comparing Selected Features of the Anatomy of Cholinergic Innervation in the Cerebral Cortex of Six Mammalian Species

  • F. Eckenstein
Chapter

Abstract

Many different investigators have contributed over the last five decades to establishing acetylcholine (ACh) as a neurotransmitter in cerebral cortex. Besides ACh itself, all biochemical correlates of cholinergic function, such as the ACh synthesising and degrading enzymes, choline acetyltransferase (ChAT) and acetylcholinesterase (AChE), respectively, as well as ACh receptors and the high affinity uptake mechanism have all been shown to be present in cortex. In addition, cortical neurons have been found to be sensitive to extracellular application of ACh (for reviews see Emson and Lindvall, 1979; Parnavelas and McDonald, 1983; Eckenstein and Baughman, 1986).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coyle, J. T., Price, D. L., and DeLong, M. R. (1983). Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science, 219, 1184–90.CrossRefPubMedGoogle Scholar
  2. Davies, P. (1979). Neurotransmitter-related enzymes in senile dementia of the Alzheimer type. Brain Res., 171, 319–27.CrossRefPubMedGoogle Scholar
  3. Eckenstein, F., and Baughman, R. W. (1984). Two types of cholinergic innervation in cerebral cortex, one co-localised with vasoactive intestinal polypeptide. Nature, 309, 152–5.CrossRefGoogle Scholar
  4. Eckenstein, F., and Baughman, R. W. (1986). Cholinergic cortical innervation. In Peters and Jones, (eds.), The Cerebral Cortex. Pergamon (in press).Google Scholar
  5. Eckenstein, F., and Thoenen, H. (1982). Production of specific antisera and monoclonal antibodies to choline acetyltransferase: characterisation and use for identification of cholinergic neurons. EMBO J., 1, 363–8.Google Scholar
  6. Eckenstein, F., and Thoenen, H. (1983). Cholinergic neurons in the rat cerebral cortex demonstrated by immunohistochemical localization of choline acetyltransferase. Neurosci. Lett., 36, 211–15.CrossRefPubMedGoogle Scholar
  7. Emson, P. C., and Lindvall, O. (1979). Distribution of putative neurotransmitters in cortex. Neurosci., 4, 1–30.CrossRefGoogle Scholar
  8. Fibiger, H. C. (1982). The organization and some projections of cholinergic neurons of the mammalian forebrain. Brain Res. Rev., 4, 327–88.CrossRefGoogle Scholar
  9. Houser, C. R., Crawford, G. D., Salvaterra, P. M., and Vaughn, J. E. (1985). Immunocytochemical localization of choline acetyltransferase in rat cerebral cortex: a study of cholinergic neurons and synapses. J. Comp. Neurol.Google Scholar
  10. Houser, C. R., Crawford, G. D., Barber, R. P., Salvaterra, P. M., and Vaughn, J. E. (1983). Organization and morphological characteristics of cholinergic neurons: an immunocytochemical study with a monoclonal antibody to choline acetyltransferase. Brain Res., 266, 97–119.CrossRefPubMedGoogle Scholar
  11. Johnston, M. V., McKinney, M., and Coyle, J. T. (1979). Evidence for a cholinergic projection to neocortex from neurons in the basal forebrain. Proc. Natl Acad. Sci. USA, 76, 5392–6.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Lehmann, J. H, Nagy, S., Atmadja, S., and Fibiger, H. C. (1980). The nucleus basalis magnocellularis: the origin of a cholinergic projection to the neocortex of the rat. Neurosci., 5, 1161–1174.CrossRefGoogle Scholar
  13. Levey, A. I., Armstrong, D. M., Atweh, S. F., Terry, R. D., and Wainer, B. H. (1983). Monoclonal antibodies to choline acetyltransferase: production, specificity and immunohistochemistry. J. Neurosci., 3, 1–9.PubMedGoogle Scholar
  14. Loren, I., Emson, P. C., Fahrenkrug, J., Bjorklund, A., Alumets, J., Hakanson, R., and Sundler, F. (1979). Distribution of vasoactive intestinal polypeptide in the rat and mouse brain. Neurosci., 4, 1953–76.CrossRefGoogle Scholar
  15. Magistretti, P. J., Morrison, J. H., Shoemaker, W. J., Sapin, V., and Bloom, F. E. (1981). Vasoactive intestinal polypeptide induces glycogenolysis in mouse cortical slices: a possible regulatory mechanism for the local control of energy metabolism. Proc. Natl Acad. Sci. USA, 78, 6535–9.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Mesulam, M. M., Mufson, E. J., Levey, A. I., and Wainer, B. H. (1983a). Cholinergic innervation by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J. Comp. Neurol, 214, 170–97.CrossRefPubMedGoogle Scholar
  17. Mesulam, M. M., Mufson, E. J., Wainer, B. H., and Levey, A. I. (1983b). Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch. 1-Ch. 6) Neurosci., 10, 1185–201.Google Scholar
  18. Parnavelas, J. G., and McDonald, J. K. (1983). The cerebral cortex. In Emson, P. C. (ed.), Chemical Neuroanatomy. Raven Press, New York, pp. 505–49.Google Scholar
  19. Rossor, M. N., Fahrenkrug, J., Emson, P. C., Mountjoy, C., Iversen, L. L., and Roth, M. (1980). Reduced cortical choline acetyltransferase activity in senile dementia of Alzheimer’s type is not accompanied by changes in vasoactive intestinal polypeptide. Brain Res., 201, 249–53.CrossRefPubMedGoogle Scholar
  20. Saper, C. B. (1984). Organization of cerebral cortical afferent systems in the rat. 1: Magnocellular basal nucleus. J. Comp. Neurol., 222, 313–42.CrossRefPubMedGoogle Scholar
  21. Vincent, S. R., Satoh, K., Armstrong, D. M., and Fibiger, H. C. (1983). Substance P in the ascending cholinergic reticular system. Nature, 306, 688–91.CrossRefPubMedGoogle Scholar
  22. Woolf, N. J., Eckenstein, F., and Butcher, L. L. (1983). Cholinergic projections from the basal forebrain to the frontal cortex: a combined fluorescent tracer and immunohistochemical analysis in the rat. Neurosci. Lett., 40, 93–8.CrossRefPubMedGoogle Scholar

Copyright information

© The Editors and the Contributors 1986

Authors and Affiliations

  • F. Eckenstein

There are no affiliations available

Personalised recommendations