Anatomical Organization of NMDA, Kainate and Quisqualate Receptors

  • D. T. Monaghan
  • C. W. Cotman

Abstract

The anatomical localization of excitatory amino acid receptors is necessary for evaluating their functional role in specific pathways and systems in the CNS. Autoradiography allows a quantitative description of anatomical and pharmacological properties of binding sites in specific CNS locations which can then be correlated to function. Receptors in a single dendritic field can be both biochemically characterized and rigorously studied by electrophysiological techniques. It is also possible, once the sites are defined, to study their development, the effects of lesions, and the consequences of treatments upon receptors in discrete pathways.

Keywords

NMDA Tritium Octanoate Hexanoate Heptanoate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baudry, M. and Lynch, G. (1981). Characterization of two [3H] glutamate binding sites in rat hippocampal membranes. J. Neurochem. 36: 811–820PubMedCrossRefGoogle Scholar
  2. Beaumont, K., Y. Maurin, T.D. Reisine, J.Z. Fields, E. Spokes, E.D. Bird, and H.I. Yamamura (1979). Huntington’s disease and its animal model: alterations in kainic acid binding. Life Sci. 24 809–816.PubMedCrossRefGoogle Scholar
  3. Berger. M.L. and Ben-Ari, Y. (1983). Autoradiographic visualization of [3H] kainic acid receptor subtypes in the rat hippocampus. Neurosci. Lett. 39: 237–242.CrossRefGoogle Scholar
  4. Berger, M.L., Tremblay, M., Nitecka, L., and Ben-Ari, Y. (1984). Maturation of kainic acid seizure-brain damage syndrome in the rat. III. Postnatal development of kainic acid binding sites in the limbic system. Neurosci. 13: 1095–1104.CrossRefGoogle Scholar
  5. Bridges, R.J., Nieto-Sampedro, M., and Cotman, C.W. (1985). Stereospecific binding of L-glutamate to astrocyte membranes. Soc. Neurosci. Abstr. (in press).Google Scholar
  6. Butcher, S.P., J.F. Collins, and P.J. Roberts (1983). Characterization of the binding of DL-[3H]-2-amino-4-phosphonobutyrate to L-glutamate-sensitive sites on rat brain synaptic membranes. Brit. J. Pharmacol.80: 355–364.CrossRefGoogle Scholar
  7. Crepel, F., S.S. Ahanjal, and T.A. Sears (1982). Effect of glutmate, aspartate, and related derivatives on cerebellar Purkinje cell dendrites in the rat: an in vitro study. J. Physiol. (Lond.) 329: 297–317.PubMedCentralCrossRefGoogle Scholar
  8. Davies, J. and Watkins, J.C. (1983). Role of excitatory amino acid receptors in mono- and polysynaptic excitation in the cat spinal cord. Exp. Brain Res. 49 280–290.PubMedCrossRefGoogle Scholar
  9. Fagg-G.E. (1985) L-glutamate, excitatory amino acid receptors and brain function. Trends Neurosci. 8: 207–210.CrossRefGoogle Scholar
  10. Fagg, G.E., Foster, A.C., Mena, E.E., and Cotman, C.W. (1982). Chloride and calcium ions reveal a pharmacologically distinct population of L-glutamate binding sites in synaptic membranes: correspondence between biochemical and electrophysiological data. J. Neurosci. 2: 958–965.PubMedGoogle Scholar
  11. Fagg, G.E., Foster, A.C., Mena, E.E., and Cotman, C.W. (1983). Chloride and calcium ions separate L-glutamate receptors in synaptic membranes. Eur. J. Pharmacol. 88: 105–110.PubMedCrossRefGoogle Scholar
  12. Fagg, G.E. and Matus, A. (1984). Selective association of N-methyl-aspartate and quisqualate types of L-glutamate receptor with brain postsynaptic densities. Proc. Natl. Acad. Sci. U.S.A. 81: 6876–6880.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Fagg, G.E., Riederer, B., and Matus, A., (1984). Sodium ions regulate a specific population of acidic amino acid receptors in synaptic membranes. Life Sciences. 34: 1739–1745.PubMedCrossRefGoogle Scholar
  14. Foster, A.C. and Fagg, G.E. (1984). Acidic amino acid binding sites in mammalian neuronal membranes: Their characteristics and relationship to synaptic receptors. Brain Res. Rev. 7 103–164.CrossRefGoogle Scholar
  15. Foster, A.C. and P.J. Roberts (1978) High-affinity L-3H-glutamate binding to postsynaptic receptor sites on rat cerebellar synaptic membranes. J. Neurochem. 31: 1467–1477.PubMedCrossRefGoogle Scholar
  16. Foster, A.C., Mena, E.E., Monaghan, D.T., and Cotman, C.W. (1981). Synaptic localization of kainic acid binding sites. Nature 281: 73–75.CrossRefGoogle Scholar
  17. Geddes, J.W., Monaghan, D.T., Lott, I.T., Chui, H., Kim, R., and Cotman, C.W. (1985). Soc. Neurosci. Abstr. (in press).Google Scholar
  18. Greenamyre, J.T., Olson, J.M., Penny, J.B., and Young, A.B. (1985). Autoradiographic characterization of N-methyl-Daspartate-, quisqualate-, and kainate-sensitive glutamate binding sites. J. Pharm. Exp. Therap. 233: 254–263.Google Scholar
  19. Greenamyre, J.T., A.B. Young, and J.B. Penny (1983). Quantitative autoradiography of L-[3H]-glutamate binding to rat brain. Neurosci. Lett. 37; 155–160.PubMedCrossRefGoogle Scholar
  20. Greenamyre, J.T., A.B. Young, J.B. Penny (1984). Quantitative autoradiographic distribution of L-[3H] -glutamate binding sites in rat central nervous system. J. Neurosci. 4: 2133–2144.PubMedGoogle Scholar
  21. Halpain, S., C.M. Wieczorek, and T.C Rainbow (1984). Localization of L-glutamate receptors in rat brain by quantitative autoradiography. J. Neurosci. 4: 2247–2258.PubMedGoogle Scholar
  22. Harris, E.W., Ganong, A.H., and Cotman, C.W. (1984). Long-term potentiation in the hippocampus involves activation of N-methyl-D-aspartate receptors. Brain Res. 323: 132–137.PubMedCrossRefGoogle Scholar
  23. Henke, H., Beaudet, A., and Cuenod, M. (1981). Autoradiographic localization of specific kainic acid binding sites in pigeon and rat cerebellum. Brain Res. 219: 95–105.PubMedCrossRefGoogle Scholar
  24. Honore, T., Lauridsen, J. and Krogsgaard-Larsen, P. (1982). The binding of [3H] AMPA, a structural analogue of glutamic acid, to rat brain membranes. J. Neurochem. 38: 173–178.PubMedCrossRefGoogle Scholar
  25. Krieg, W.J.S. (1946). Connections of the cerebral cortex, J. Comp. Neurol., 84: 221–275.PubMedCrossRefGoogle Scholar
  26. London, E.D., and Coyle, J.T. (1979). Specific binding of [3H]-kainic acid to receptor sites in rat brain. Molec. Pharmacol. 15 492–505.Google Scholar
  27. Mena, E.E., D.T. Monaghan, S.R. Whittemore and C.W. Cotman (1985). Cations differentiate subtypes of L-glutamate binding sites in rat forebrain. Brain Res., 329: 319–322.CrossRefGoogle Scholar
  28. Mena, E.E., Whittemore, S.R., Monaghan, D.T., and Cotman, C.W. (1984). Ionic regulation of glutamate binding sites. Life Sciences 35: 2427–2433.PubMedCrossRefGoogle Scholar
  29. Monaghan, D.T. and Cotman, C.W. (1982). Distribution of [3H] -kainic acid binding sites in rat CNS as determined by autoradiography. Brain Res. 252: 91–100.PubMedCrossRefGoogle Scholar
  30. Monaghan, D.T. and Cotman, C.W. (1985). Distribution of NMDA-sensitive L-[3H]-glutamate binding sites in rat brain as determined by quantitative autoradiography. J. Neuroscience (in press).Google Scholar
  31. Monaghan, D.T., Holets, V.L., Toy, D.W., and Cotman, C.W. (1983a). Anatomical distributions of four pharmacologically distinct [3H]-L-glutamate binding sites. Nature 306: 176–179.PubMedCrossRefGoogle Scholar
  32. Monaghan, D.T., McMills, M.C., Chamberlin, A.R., and Cotman, C.W. (1983b). Synthesis of H 2-amino-4-phosphonobutyric acid and characterization of its binding to rat brain membranes: a selective ligand for the chloride/calcium-dependent class of L-glutamate binding sites. Brain Res. 278: 137–144.PubMedCrossRefGoogle Scholar
  33. Monaghan, D.T., Yao, D., and Cotman, C.W. (1984a). Distribution of CHAMPA binding sites in rat brain as determined by quantitative autoradiography. Brain Res. 324: 160–164.PubMedCrossRefGoogle Scholar
  34. Monaghan, D.T., Yao, D., and Cotman, C.W. (1985a). L-[3H] -glutamate binds to kainate-, NMDA-, and AMPA-sensitive binding sites: an autoradiographic analysis. Brain Res. 340: 378–383.PubMedCrossRefGoogle Scholar
  35. Monaghan, D.T., Yao, D., Nguyen, L., and Cotman, C.W. (1985b). Excitatory amino acid binding sites: Correspondence between autoradiographic and membrane fraction preparations. Soc. Neurosci. (in press).Google Scholar
  36. Monaghan, D.T., Yao, D., Olverman, H.J., Watkins, J.C, and Cotman, C.W. (1984b). Autoradiography of D-[3H]-2-amino-5-phosphonopentanoate binding sites in rat brain. Neurosci. Lett. 52: 253–258.PubMedCrossRefGoogle Scholar
  37. Nadler, J.V., Wang, A., and Werling, L.L. (1985) Binding sites for L-[3H] -glutamate on hippocampal synaptic membranes: Three populations differentially affected by chloride and calcium ions. J. Neurochem. 44: 1791–1798.PubMedCrossRefGoogle Scholar
  38. Olverman, H.J., Jones, A.W., and Watkins, J.C. (1984). L-glutamate has higher affinity than other amino acids for 3H-D-AP5 binding sites in rat brain membranes. Nature 307: 460–462.PubMedCrossRefGoogle Scholar
  39. Pin, J-P., Bockaert, J., and Recasens, M. (1984). The Ca++/Cl- dependent L-[3H] glutamate binding: a new receptor or a particular transport process? FEBS Letters 175: 31–36.PubMedCrossRefGoogle Scholar
  40. Pumain, R., Kurcewicz, I., Louvel, J., and Heinemann, U. (1984). Electrophysiological evidence for a differential localization of excitatory amino acid receptors in the rat neocortex. Neurosci. Lett. (Supplement) 18: S433.Google Scholar
  41. Rainbow, T.C., Wieczorek, C.M., and Halpain, S. (1984). Quantitative autoradiograpy of binding sites for [3H] AMPA, a structural analogue of glutamic acid. Brain Res. 309: 173–177.PubMedCrossRefGoogle Scholar
  42. Robertson, J.H. and Deadwyler, S.A. (1981). Kainic acid produces depolarization of CA3 pyramidal cells in the in vitro hippocampal slice. Brain Res. 221: 117–127.CrossRefGoogle Scholar
  43. Schwob, J.E., Fuller, T., Price, J.L. and Olney, J.W. (1980). Widespread patterns of neuronal damage following systemic or intracerebral injections of kainic acid: a histological study. Neurosci. 5: 991–1014.CrossRefGoogle Scholar
  44. Simon, J.R., Contrera, J.F., and Kuhar, M.J. (1976). Binding of [3H] -kainic acid, an analogue of L-glutamate to brain membranes. J. Neurochem. 26: 141–147.PubMedGoogle Scholar
  45. Unnerstall, J.R. and Wamsley, J.K. (1983) Autoradiographic localization of high-affinity [3H] -kainic acid binding sites in the rat forebrain. Eur. J. Pharmacol. 86: 361–371.PubMedCrossRefGoogle Scholar
  46. Waniewski, R.A., and Martin, D.L. (1984). Selective inhibition of glial versus neuronal uptake of L-glutamate by SITS. Brain Res. 268: 390–394.CrossRefGoogle Scholar
  47. Waniewski, R.A., and Martin, D.L. (1984). Characterization of L-glutamic acid transport by glioma cells in culture: evidence for sodium-independent, chloride dependent high affinity influx. J. Neurosci. 4: 2237–2246.PubMedGoogle Scholar
  48. Watkins, J.C, (1984). Excitatory amino acids and central synaptic transmission. Trends in Pharmacol. Sci. 84 373–376.CrossRefGoogle Scholar
  49. Werling, L.L., A. Doman, and J.V. Nadler (1983). L-[3H] -glutamate binding to hippocampal synaptic membranes: two binding sites discriminated by their differing affinities for quisqualate. J. Neurochem. 41: 586–593.PubMedCrossRefGoogle Scholar
  50. Wheeler, D.D. (1979). A model of high affinity glutamic acid transport by rat cortical synaptosomes- a refinement of the originally proposed model. J. Neurochem. 33: 883–894.PubMedCrossRefGoogle Scholar
  51. Yao, D., Monaghan, D.T., Ganong, A.H., Harris, E.W., and Cotman, C.W. (1984). NMDA receptors in the rat brain. I. Subcellular and anatomical distribution. Soc. Neurosci. 10: 419.Google Scholar

Copyright information

© The Editors and the Contributors 1986

Authors and Affiliations

  • D. T. Monaghan
  • C. W. Cotman

There are no affiliations available

Personalised recommendations