Skip to main content

Twenty-five Years of Excitatory Amino Acid Research

  • Chapter
Excitatory Amino Acids

Abstract

Rather than attempt an overview of the whole field (which, in any case, is comprehensively and much more eloquently provided by the rest of this volume) I am taking the opportunity offered by the nature of the occasion to review those aspects of the subject with which my colleagues and I, over a period of twenty seven years, have been most closely associated. In chronicling our endeavours over these years, our failures as well as successes, some trails leading nowhere, others to completely unexpected and important findings, I hope to provide some indication, particularly to the young, of the true nature of scientific research, which rarely flows as smoothly as polished publications might suggest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ames, A. (1956) Studies on water and electrolytes in nervous tissue. J. Neurophysiol. 19 213–223.

    PubMed  CAS  Google Scholar 

  • Ames, A., Tsukada, Y. and Nesbitt, F.B. (1967) Intracellular C1-, Na+, K+, Ca2+ and P in nervous tissue: response to glutamate and to changes in extracellular calcium. J. Neurochem. 14 145–159.

    Article  PubMed  CAS  Google Scholar 

  • Ault, B., Evans, R.H., Francis, A.A., Oakes, D.J. and Watkins, J.C. (1980) Selective depression of excitatory amino acid-induced depolarization by magnesium ions in isolated spinal cord preparations. J. Physiol. (Lond) 307 413–428.

    Article  CAS  Google Scholar 

  • Balcar, V.J. and Johnston, G.A.R. (1972a) The structural specificity of the high affinity uptake of L-glutamate and L-aspartate by rat brain slices. J. Neurochem. 19 2657–2666.

    Article  PubMed  CAS  Google Scholar 

  • Balcar, V.J. and Johnston, G.A.R. (1972b) Glutamate uptake by brain slices and its relation to the depolarization of neurones by acidic amino acids. J. Neurobiol. 3 295–301.

    Article  PubMed  CAS  Google Scholar 

  • Bangham, A.D. Standish, M.M. and Watkins, J.C. (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol. 13 238–252.

    Article  PubMed  CAS  Google Scholar 

  • Barron, D.H. and Matthews, B.H.C. (1938) The interpretation of potential changes in the spinal cord. J. Physiol. (Lond) 92 276–321.

    Article  CAS  Google Scholar 

  • Biscoe, T.J., Davies, J., Dray, A., Evans, R.H., Francis, A.A., Martin, M.R. and Watkins, J.C. (1977) Depression of synaptic excitation and of amino acid-induced excitatory responses of spinal neurones by D-a-aminoadipate, a,?-diaminopimelic acid and HA-966. Eur. J. Pharmac. 45 315–316.

    Article  CAS  Google Scholar 

  • Biscoe, R.J., Davies, J., Dray, A., Evans, R.H., Martin, M.R. and Watkins, J.C. (1978) D-α-Arainoadipate, a, ε-diaminopimelic acid, and HA-966 as antagonists of amino acid-induced and synaptic excitation of mammalian spinal neurones, in VivO. Brain Res. 148 543–548.

    Article  PubMed  CAS  Google Scholar 

  • Biscoe, T.J., Evans, R.H., Francis, A.A., Martin, M.R., Watkins, J.C Davies, J. and Dray, A. (1977) D-a-Aminoadipate as a selective antagonist of amino acid-induced and synaptic excitation of mammalian spinal neurones. Nature (Lond) 270 743–745.

    Article  CAS  Google Scholar 

  • Bradford, H.F. and Mcllwain, H. (1966) Ionic basis for the depolarization of cerebral tissues by excitatory acidic amino acids. J. Neurochem. 13 1163–1177.

    Article  PubMed  CAS  Google Scholar 

  • Bradford, H.F., Ward, H.K. and Thomas, A.J. (1978) Glutamine: a major substrate for nerve endings. J. Neurochem. 30 1453–1459.

    Article  PubMed  CAS  Google Scholar 

  • Brooks, V.B., Ransmeier, R.E. and Gerard, R.W. (1949) Action of acetylcholinesterase, drugs, and intermediates on respiration and electrical activity of the isolated frog brain. Am. J. Physiol. 157 299–316.

    PubMed  CAS  Google Scholar 

  • Collingridge, G.L. Kehl, S.J. and McLennan, H. (1983) Excitatory amino acids in synaptic transmission in the Schaffer-commissural pathway of the rat hippocampus. J. Physiol. (Lond) 334 33–46.

    Article  CAS  Google Scholar 

  • Cotman, C.W. and Hamberger, A. (1978) Glutamate as a CNS neurotransmitter. Properties of release, inactivation and biosynthesis. In: Amino Acids as Chemical Transmitters. Ed. by F. Fonnum. Plenum Press. New York, pp 379–412.

    Chapter  Google Scholar 

  • Cox, D.W.G., Headley, P.M. and Watkins, J.C. Actions of L- and D-homocysteate in rat CNS: a correlation between lowaffinity uptake and the time courses of excitation by microelectrophoretically applied L-glutamate analogues. J. Neurochem. 29 579–588.

    Google Scholar 

  • Crawford, J.M. and Curtis, D.R. (1964) The excitation and depression of mammalian cortical neurones by amino acids. Br. J. Pharmacol. 23 313–329.

    CAS  Google Scholar 

  • Croucher. M.J., Collins, J.F. and Meldrum, B.S. (1982) Anticonvulsant action of excitatory amino acid antagonists. Science 216 899–901.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, D.R., Duggan, A.W. and Johnston, G.A.R. (1970) The inactivation of extracellularly administered amino acids in the feline spinal cord. Exp. Brain Res. 10 447–462.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, D.R. and Johnston, G.A.R. (1974) Amino acid transmitters in the mammalian central nervous system. Ergebn. Physiol. 69 97–188.

    PubMed  CAS  Google Scholar 

  • Curtis, D.R., Johnston, G.A.R., Game, C.J.A. and McCulloch, R.M. (1973) Antagonism of neuronal excitation by 1-hydroxy-3-amino-pyrrolidone-2. Brain Res. 49 467–470.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, D.R., Perrin, D.D. and Watkins, J.C. (1960) The excitation of spinal neurones by the iontophoretic application of agents which chelate calcium. J. Neurochem. 6 1–20.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, D.R., Phillis, J.W. and Watkins, J.C. (1959) Chemical excitation of spinal neurones. Nature (Lond) 183 611.

    Article  CAS  Google Scholar 

  • Curtis, D.R., Phillis, J.W. and Watkins, J.C. (1960) The chemical excitation of spinal neurones by certain acidic amino acids. J. Physiol. 150 656–682.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Curtis, D.R., Phillis, J.W. and Watkins, J.C. (1961) Actions of amino acids on the isolated hemisected spinal cord of the toad. Br. J. Pharmac. 16 262–283.

    CAS  Google Scholar 

  • Curtis, D.R. and Watkins, J.C. (1960) The excitation and depression of spinal neurones by structurally related amino acids. J. Neurochem. 6 117–141.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, D.R. and Watkins, J.C. (1965) The pharmacology of amino acids related to?-aminobutyric acid. Pharm. Rev. 17 347–392.

    PubMed  CAS  Google Scholar 

  • Davies, J., Evans, R.H., Francis, A.A. and Watkins, J.C. (1979) Excitatory amino acid receptors and synaptic excitation in the mammalian central nervous system. J. Physiol. (Paris) 75 641–645.

    CAS  Google Scholar 

  • Davies, J., Evans, R.H., Jones, A.W., Smith, D.A.S. and Watkins, J.C. (1982) Differential activation and blockade of excitatory amino acid receptors in the mammalian and amphibian central nervous system. Comp. Biochem. Physiol. 72C 211–224.

    CAS  Google Scholar 

  • Davies, J., Francis, A.A. Jones, A.W. and Watkins, J.C. (1981) 2-Amino-5-phosphonovalerate (2APV), a potent and selective antagonist of amino acid-induced and synaptic excitation. Neurosci. Lett. 21 77–81.

    Article  PubMed  CAS  Google Scholar 

  • Davies, J., Jones, A.W., Sheardown, M.J., Smith, D.A.S. and Watkins, J.C. (1984) Phosphonodipeptides and piperazine derivatives as antagonists of amino acid-induced and synaptic excitation in mammalian and amphibian spinal cord. Neurosci. Lett. 52 79–84.

    Article  PubMed  CAS  Google Scholar 

  • Davies, J., Miller, A.J. and Sheardown, M.J. (1985) Excitatory amino acid receptors and neurotransmittion in the feline red nucleus. J. Physiol.(Lond) abstract, in press.

    Google Scholar 

  • Davies, J. and Watkins, J.C. (1973) Microelectrophoretic studies on the depressant action of HA-966 on chemically and synaptically-excited neurones in the cat cerebral cortex and cuneate nucleus. Brain Res. 59 311–322.

    Article  PubMed  CAS  Google Scholar 

  • Davies, J. and Watkins, J.C. (1979) Selective antagonism of amino acid-induced and synaptic excitation in the cat spinal cord. J. Physiol. (Lond) 297 621–636.

    Article  CAS  Google Scholar 

  • Davies, J. and Watkins, J.C. (1981) Differentiation of kainate and quisqualate receptors in the cat spinal cord by selective antagonism with?-D(and L)-glutamylglycine. Brain Res. 206 172–177.

    Article  PubMed  CAS  Google Scholar 

  • Davies, J. and Watkins, J.C. (1983) Role of excitatory amino acid receptors in mono and polysynaptic excitation in the cat spinal cord. Exp. Brain Res. 49 280–290.

    Article  PubMed  CAS  Google Scholar 

  • Davies, J. and Watkins, J.C. (1985) Depressant actions of?-D-glutamylaminomethyl sulfonate (GAMS) on amino acid-induced and synaptic excitation in the cat spinal cord. Brain Res. 327 113–120.

    Article  PubMed  CAS  Google Scholar 

  • Del Castillo, J. and Engbaek, L. (1954) The nature of the neuromuscular block produced by magnesium. J. Physiol. (Lond) 124 370–384.

    Article  Google Scholar 

  • Del Castillo, J. and Katz, B. (1955) On the localization of acetylcholine receptors. J. Physiol. (Lond) 128 157–181.

    Article  Google Scholar 

  • Duggan, A.W. (1974) The differential sensitivity to L-glutamate and Laspartate of spinal interneurones and Renshaw cells. Exp. Brain Res. 19 522–528.

    Article  PubMed  CAS  Google Scholar 

  • Eccles, J.C. (1946) Synaptic potentials of motoneurones. J. Neurophysiol. 9 87–120.

    PubMed  CAS  Google Scholar 

  • Erez, U., Frenk, H., Goldberg, o., Cohen, A. and Teichberg, V.I. (1985) Anticonvulsant properties of 3-hydroxy-2-quinoxalinecarboxy-lic acid, a newly found antagonist of excitatory amino acids. Eur. J. Pharmacol. 110 31–39.

    Article  PubMed  CAS  Google Scholar 

  • Evans, R.H., Francis, A.A., Hunt, K., Oakes, D.J. and Watkins, J.C. (1979) Antagonism of excitatory amino acid-induced responses and of synaptic excitation in the isolated spinal cord of the frog. Br.J. Pharmacol. 67 591–603.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Evans, R.H., Francis, A.A., Jones, A.W., Smith, D.A.S. and Watkins, J.C. (1982) The effects of a series of?-phosphonic a-carboxylic amino acids on electrically evoked and amino acid induced responses in isolated spinal cord preparations. Br. J. Pharmacol. 75 65–75.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Evans, R.H., Francis, A.A. and Watkins, J.C. (1977a) Effects of monovalent cations on the responses of motoneurones to different groups of amino acid excitants on frog and rat spinal cord. Experientia (Basel) 33 246–248.

    Article  CAS  Google Scholar 

  • Evans, R.H., Francis, A.A. and Watkins, J.C. (1977b) Differential antagonism by chlorpromazine and diazepam of frog motoneurone depolarization induced by glutamate-related amino acids. Eur. J. Pharmacol. 44 325–330.

    Article  PubMed  CAS  Google Scholar 

  • Evans, R.H., Francis, A.A. and Watkins, J.C. (1977c) Selective antagonism by Mg2+ of amino acid-induced depolarization of spinal neurones. Experientia (Basel) 33 489–491.

    Article  CAS  Google Scholar 

  • Evans, R.H., Francis, A.A. and Watkins, J.C. (1978) Mg2+-like selective antagonism of excitatory amino acid-induced responses by a,?-diaminopimelic acid, D-a-aminoadipate and HA-966 in isolated spinal cord of frog and immature rat. Brain Res. 148 536–542.

    Article  PubMed  CAS  Google Scholar 

  • Evans, R.H., Smith, D.A.S. and Watkins, J.C. (1981) Differential role of excitant amino acid receptors in spinal transmission. J. Physiol. 320 55P.

    Google Scholar 

  • Evans. R.H. and Watkins, J.C. (1978) Specific antagonism of excitant amino acids in the neo-natal rat isolated spinal cord preparation. Eur. J. Pharmacology. 50 123–129.

    Article  Google Scholar 

  • Foster, A.E., Fagg, G.E., Harris, E.W. and Cotman, C.W. (1982) Regulation of glutamate receptors: a possible role of phosphatidyl serine. Brain Res. 242 374–377.

    Article  PubMed  CAS  Google Scholar 

  • Ganong, A.H., Lanthorn, T.H. and Cotman, C.W. (1983) Kynurenic acid inhibits synaptic and acidic amino acid-induced responses in the rat hippocampus and spinal cord. Brain Res. 273 170–174.

    Article  PubMed  CAS  Google Scholar 

  • Giambalvo, C. and Rosenberg, P. (1976) The effect of phospholipase and proteases on the binding of gamma-aminobutyric acid to junctional complexes of rat cerebellum. Biochim. Biophys. Acta.436 741–756.

    Article  PubMed  CAS  Google Scholar 

  • Haldemann, S., Huffman, R.D., Marshall, K.C. and McLennan, H. (1972) The antagonism of the glutamate-induced and synaptic excitation of thalamic neurones. Brain Res. 39 419–425.

    Article  Google Scholar 

  • Haldemann, S. and McLennan, H. (1972) The antagonistic action of glutamic acid diethyl ester towards amino acid-induced synaptic excitation of thalamic neurones. Brain Res. 45 393–400.

    Article  Google Scholar 

  • Hall, J.G., McLennan, H. and Wheal, H.V. (1977) The actions of certain amino acids as neuronal excitants. J. Physiol. (Lond) 272 52–53P.

    Google Scholar 

  • Harvey, J.A. and Mcllwain, H. (1968) Excitatory acidic amino acids and the cation content and sodium ion flux of isolated tissues from the brain. Biochem. J. 108 269–274.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hayashi, T. (1954) Effects of sodium glutamate on the nervous system. Keio J. Med. 3 183–192.

    Article  Google Scholar 

  • Herrling, P.L. Morris, R. and Salt, T.E. (1983) Effects of excitatory amino acids and their antagonists on membrane and action potentials of cat caudate neurones. J. Physiol. 339 207–222.

    Article  PubMed  Google Scholar 

  • Herrling, P.L. (1985) Pharmacology of the cortico-caudate e.p.s.p. in the cat: evidence for its mediation by quisqualate- or kainate receptors. Neuroscience (in press).

    Google Scholar 

  • Johnston, G.A.R., Curtis, D.R., De Groat, W.C. and Duggan, A.W. (1968) Central actions of ibotenic acid and muscimol. Biochem. Pharmacol. 17 2488–2489.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, G.A.R. and Kennedy, S.M.E. (1978) GABA receptors and phospholipids. In: Amino Acids as Chemical Transmitters, ed. by F. Fonnum, Plenum Press, New York, pp 507–516.

    Chapter  Google Scholar 

  • Jones, A.W., Smith, D.A.S. and Watkins, J.C. (1984) Structure-activity relations of dipeptide antagonists of excitatory amino acids. Neuroscience 13 573–581.

    Article  PubMed  CAS  Google Scholar 

  • Krnjevic, K. and Phillis, J.W. (1963) Iontophoretic studies of neurones in the mammalian cerebral cortex. J. Physiol.(Lond) 165 274–304.

    Article  CAS  Google Scholar 

  • Lucas, D.R. and Newhouse. J.P. (1957) The toxic effects of sodium L-glutamate on the inner layers of the retina. A.M.A. Arch. Opthalmol. 58 193.

    Article  CAS  Google Scholar 

  • Luini, A., Goldberg, 0. and Teichberg, V.l. (1981) Distinct pharmacological properties of excitatory amino acid receptors in the rat striatum: study by Na+ efflux assay. Proc. Natn. Acad. Sei. U.S.A. 78 3250–3254.

    Article  CAS  Google Scholar 

  • Mayer, M.L., Westbrook, G.L. and Guthrie, P.B. (1984) Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature (Lond) 309 261–263.

    Article  CAS  Google Scholar 

  • McCulloch, R.M. Johnston, G.A.R., Game, C.J.A. and Curtis, D.R. (1974) The differential sensitivity of spinal interneurones and Renshaw cells to kainate and N-methyl-D-aspartate. Exp. Brain Res. 21 515–518.

    Google Scholar 

  • McLennan, H., Huffman, R.D. and Marshall, K.C. (1968) Patterns of excitation of thalamic neurones by amino acids and by acetylcholine. Nature (Lond) 219 387–388.

    Article  CAS  Google Scholar 

  • McLennan, H. (1983) Receptors for the excitatory amino acids in the mammalian central nervous system. Progr: Neurobiol. 20 251–271.

    CAS  Google Scholar 

  • McLennan, H. and Lodge, D. (1979) The antagonism of amino acid-induced excitation of spinal neurones in the cat. Brain Res. 169 83–90.

    Article  PubMed  CAS  Google Scholar 

  • Meldrum, B.S. (1985) Possible therapeutic applications of antagonists of excitatory amino acid neurotransmitters. Clinical Science 68 113–122.

    Article  PubMed  CAS  Google Scholar 

  • Monaghan, D.R., Holets, V.R., Toy, D.W. and Cotman, C.W. (1983) Anatomical distribution of four pharmacologically distinct 3H-glutamate binding sites. Nature (Lond) 306 176–179.

    Article  CAS  Google Scholar 

  • Monaghan, D.T., Yao, D., Olverman, H.J. Watkins, J.C. and Cotman, C.W. (1984) Autoradiography of D-2-[3H]-amino-5-phosphono- pentanoate binding sites in rat brain. Neurosci. Lett. 52 253–258.

    Article  PubMed  CAS  Google Scholar 

  • Nastuk, W.L. (1953) Membrane potential changes at a single muscle end-plate produced by transitory application of acetylcholine with an electrically controlled microjet. Federation Proc. 12 102.

    Google Scholar 

  • Nowak, L., Bregestovski, P., Ascher, P., Herbet, A and Prochiantz, A. (1984) Magnesium gates glutamateactivated channels in mouse central neurones. Nature (Lond) 307 462–465.

    Article  CAS  Google Scholar 

  • Olney, J.W., Ho, O.L. and Rhee, J. (1971) Cytotoxic effects of acidic and sulphur-containing amino acids on the infant mouse central nervous system. Exp. Brain Res. 14 61–76.

    Article  PubMed  CAS  Google Scholar 

  • Olney, J.W., Rhee, V. and Ho, O.L. (1974) Kainic acid: a powerful neurotoxic analogue of glutamate. Brain Res. 77 507–512.

    Article  PubMed  CAS  Google Scholar 

  • Olney, J.W. (1978) Neurotoxicity of excitatory amino acids. In: Kainic Acid as a Tool in Neurobiology, (eds) E.G. McGeer, J.W. Olney and P.L. McGeer, Raven Press, New York, pp 95–121.

    Google Scholar 

  • Olverman, H. J. Jones, A.W. and Watkins, J.C. (1984) L-Glutamate has higher affinity than other amino acids for [3H]-D-AP5 binding site in rat brain membranes. Nature (Lond) 307 460–462.

    Article  CAS  Google Scholar 

  • Papahadjopoulos, D. and Watkins, J.C. (1967) Phospholipid model membranes. II. Permeability properties of hydrated lipid crystals. Biochim. Biophys. Acta 135 639–652.

    PubMed  CAS  Google Scholar 

  • Perkins, M.N., Collins, J.F. and Stone, T.W. (1982) Isomers of 2-amino-7-phosphonoheptanoic acid as antagonists of neuronal excitants. Neurosci. Lett. 32 65–68.

    Article  PubMed  CAS  Google Scholar 

  • Perkins, M.N. and Stone, T.W. (1982) An iontophoretic investigation of the action of convulsant kynurenins and their interaction with the endogenous excitant quinolinic acid, Brain Res. 247 184–187.

    Article  PubMed  CAS  Google Scholar 

  • Purpura, D.P., Girado, M., Smith, T.G., Callan, D.A. and Grundfest, H. (1959) Structureactivity determinants of pharmacological effects of amino acids and related compounds on central synapses. J. Neurochem. 3 238–268.

    Article  PubMed  CAS  Google Scholar 

  • Ramsey, R.L. and Mcllwain, H. (1970) Calcium content and exchange in neocortical tissues during the cation movements induced by glutamates. J. Neurochem. 17 781–787.

    Article  PubMed  CAS  Google Scholar 

  • Robbins, J. (1959) The excitation and inhibition of crustacean muscle by amino acids. J. Physiol. (Lond) 148 39–50.

    Article  CAS  Google Scholar 

  • Shanes, A.M. (1958) Electrochemical aspects of physiological and pharmacological action in excitable cells. Pharmacol. Rev. 10 59–274.

    PubMed  CAS  Google Scholar 

  • Shinozaki, H. and Konishi, S. (1970) Actions of several anthelmintics and insecticides on rat cortical neurones. Brain Res. 24 368–371.

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki, H. and Shibuya, I. (1974) A new potent excitant, quisqualic acid: effects on crayfish neuromuscular junction. Neuropha rmcology 13 665–672.

    Article  CAS  Google Scholar 

  • Skerritt, J.H. and Johnston, G.A.R. (1981) Uptake and release of N-methyl-D-aspartate by rat brain slices. J. Neurochem. 36 881–885.

    Article  PubMed  CAS  Google Scholar 

  • Stern, J.R., Eggleston, L.V. Hems, R. and Krebs, H.A. (1949) Accumulation of glutamic acid in isolated brain tissue. Biochem. J. 44 410–418.

    Article  CAS  PubMed Central  Google Scholar 

  • Teichberg, V.I., Tal, N., Goldberg, O. and Luini, A. (1984) Barbiturates, alcohols and the CNS excitatory neurotransmitters: specific effects on the kainic and quisqualic receptors. Brain Res. 291 285–292.

    Article  PubMed  CAS  Google Scholar 

  • Usherwood, P.N.R., Machili, P. and Leaf, G. (1968) L-Glutamate at insect excitatory nerve-muscle synapses. Nature (Lond) 219 1169–1172.

    Article  CAS  Google Scholar 

  • Usherwood, P.N.R. (1981) Glutamate synapses and receptors on insect muscle, In: Glutamate as a Neurotransmitter (eds) G. Di Chiara and G.L Gessa, Raven Press, New York, pp 183–193.

    Google Scholar 

  • Van Harreveld, A. (1959) Compounds in brain extracts causing spreading depression of cerebral cortical activity and contraction of crustacean muscle. J. Neurochem. 3 300–315.

    Article  Google Scholar 

  • Waeisch, H. (1961) Compartmentalized biosynthetic reactions in the central nervous system, In: Regional Neurochemistry (eds) S.S. Kety and J. Elkes, Pergamon Press, Oxford, pp 57–64.

    Google Scholar 

  • Watkins, J.C. (1962) The synthesis of some acidic amino acids possessing neuropharmacological activity. J. Med. Pharm. Chem. 5 1187–1199.

    Article  CAS  Google Scholar 

  • Watkins, J.C. (1965) Pharmacological receptors and general permeability phenomena of cell membranes. J. Theoret. Biol. 9 37–50.

    Article  CAS  Google Scholar 

  • Watkins, J.C. (1967) Acidic amino acids and excitation. Biochem. J. 102 14P.

    Google Scholar 

  • Watkins, J.C. (1984) Excitatory amino acids and central synaptic transmission. Trends in Pharmacol. Sci. 5 373–376.

    Article  CAS  Google Scholar 

  • Watkins, J.C. Curtis, D.R. and Biscoe, T.J. (1966) Central effects of ß-N-oxalyl-a,?-diaminopropionic acid and other lathyrus factors. Nature 211 637.

    Article  PubMed  CAS  Google Scholar 

  • Watkins, J.C, Davies, J., Evans, R.H., Francis, A.A. and Jones, A. W. (1981) Pharmacology of receptors for excitatory amino acids, In: Glutamate as a Neurotransmitter (eds) G. Di Chiara and G.L. Gessa, Raven Press, New York, pp 263–273.

    Google Scholar 

  • Watkins, J.C. and Evans, R.H. (1981) Excitatory amino acid transmitters. Ann. Rev. Pharmacol. Toxicol. 21 165–204.

    Article  CAS  Google Scholar 

  • Watkins, J.C. Evans, R.H., Headley, P.M. Cox, D.W.G., Francis, A.A. and Oakes, D.J. (1978) Role of uptake in excitation of central neurones by glutamate-related amino acids: possible value in transmitter identification, In: Iontophoresis and transmitter mechanisms in the mammalian central nervous system, (eds) J.S. Kelly and R.W. Ryall, Elsevier/North Holland Biomedical Press, pp 397–399.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1986 The Editors and the Contributors

About this chapter

Cite this chapter

Watkins, J.C. (1986). Twenty-five Years of Excitatory Amino Acid Research. In: Roberts, P.J., Storm-Mathisen, J., Bradford, H.F. (eds) Excitatory Amino Acids. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-08479-1_1

Download citation

Publish with us

Policies and ethics