Advertisement

Quantitative Autoradiographic Localization of Dopamine Receptors and Uptake Sites in the Rat and Human Cns

  • B. Scatton
  • A. Dubois
  • A. Camus
  • F. Javoy-Agid
  • N. R. Zahniser
  • M. L. Dubocovich
  • A. Cudennec
Part of the Wenner-Gren Center International Symposium Series book series (WGS)

Abstract

Dopamine (DA) receptors have been identified in various areas of the mammalian central nervous system (CNS) by conventional in vitro binding techniques using radiolabelled DA agonists and antagonists (see Seeman, 1980 for a review). However, in order to better understand the organization of DA-containing systems within the CNS, DA receptors need to be localized more precisely within the various DA-rich areas. The recent development of light microscopic receptor autoradiography (Young and Kuhar, 1979; Murrin, 1981; Palacios, 1981) has provided a means to analyze the localization of specific sites quantitatively and with a high degree of anatomical resolution in the CNS. In the present study we have used the technique of autoradiography to investigate in detail the anatomical distribution of DA receptors in the rat brain and spinal cord subregions and in selected regions of the human brain using 3H-N-propyl- norapomorphine, a potent DA receptor agonist, as a ligand.

Keywords

Spinal Cord Dopamine Receptor Caudate Nucleus Human Central Nervous System Olfactory Tubercle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biegon, A. and Rainbow, T.C. (1983). Localization and characterization of 3H-desmethylimipramine binding sites in rat brain by quantitative autoradiography. J. Neurosci. 3, 1069–1076.PubMedGoogle Scholar
  2. Björklund, A. and Skagerberg, G. (1979). Evidence for a major spinal cord projection from the diencephalic A11 dopamine cell group in the rat using transmitter specific fluorescent retrograde tracing. Brain Res. 177, 170–175.CrossRefPubMedGoogle Scholar
  3. Bokobza, B., Ruberg, M., Scatton, B., Javoy-Agid, F. and Agid, Y. (1982). 3H-spiperone binding, dopamine and HVA concentrations in Parkinson’s disease and supranuclear palsy. Europ. J. Pharmacol. 99, 167–175.CrossRefGoogle Scholar
  4. Commissiong, J.W., Gentleman, S. and Neff, N.H. (1979). Spinal cord dopaminergic neurons: evidence for an uncrossed nigrospinal pathway Neuropharmacology 18, 565–568.PubMedGoogle Scholar
  5. Commissiong, J.W. and Neff, N.H. (1979). Current status of dopamine in the mammalian spinal cord. Biochem. Pharmacol. 28, 1569–1573.CrossRefPubMedGoogle Scholar
  6. Demenge, P., Mouchet, P., Guerin, B. and Feuerstein, C. (1981). Identification and distribution of neuroleptic binding sites in the rat spinal cord. J. Neurochem. 37, 53–59.CrossRefPubMedGoogle Scholar
  7. Dubocovich, M.L. and Zahniser, N.R. (1983). Binding of the dopamine uptake inhibitor 3H-nomifensine to striatal membranes. Soc. Neurosci. Abstr. 9 564.Google Scholar
  8. Fuxe, K., Calza, L., Benfenati, F., Zini, I. and Agnati, L.F. (1983). Quantitative autoradiographic localization of 3H-imipramine binding sites in the brain of the rat: relationship to ascending 5-hydroxy-tryptamine neuron systems. Proc. Natl. Acad. Sci. USA, 80, 3836–3840.PubMedCentralCrossRefPubMedGoogle Scholar
  9. Hall, M.D., Jenner, P., Kelly, E. and Marsden, C.D. (1983). Differential anatomical location of 3H-N, n-propylnorapomorphine and 3H- spiperone binding sites in the striatum and substantia nigra of the rat. Brit. J. Pharmacol. 79, 599–610.CrossRefGoogle Scholar
  10. Hunt, P., Kannengiesser, M.H. and Raynaud, J.P. (1974). Nomifensine: a new potent inhibitor of dopamine uptake into synaptosomes from rat brain corpus striatum. J. Pharm. Pharmac. 26, 370–371.CrossRefGoogle Scholar
  11. Javitch, J.A., Blaustein, R.O. and Snyder, S.H. (1983). 3H-mazindol binding associated with neuronal dopamine uptake sites in corpus striatum membranes. Europ. J. Pharmacol. 90, 461–462.CrossRefGoogle Scholar
  12. Jones, B.E. and Moore, R.Y. (1977). Ascending projections of the locus coeruleus in the rat. II. Autoradiographic studies. Brain Res. 127, 23–53.CrossRefGoogle Scholar
  13. Kennedy, L.T. and Hanbauer, I. (1983). Sodium-sensitive cocaine binding to rat striatal membrane: possible relationship to dopamine uptake sites. J. Neurochem. 41, 172–178.CrossRefPubMedGoogle Scholar
  14. Langer, S.Z., Moret, C., Raisman, R., Dubocovich, M.L. and Briley, M. (1980). High affinity 3H-imipramine binding in rat hypothalamus is associated with the uptake of serotonin but not norepinephrine, Science 210, 1133–1135.CrossRefPubMedGoogle Scholar
  15. Lee, C.M. and Snyder, S.H. (1981). Norepinephrine neuronal uptake binding sites in rat brain membranes labelled with 3H-desipramine. Proc. Natl. Acad. Sci. USA 78, 5250–5254.PubMedCentralCrossRefPubMedGoogle Scholar
  16. Lindvall, O. and Bjorklund, A. (1978). Anatomy of the dopaminergic neuron system in the rat brain. In Dopamine Advances in Biochemical Psychopharmacology, Vol. 19 (eds P.J. Roberts, G.N. Woodruff and L. L. Iversen). Raven Press, New York, pp 1–23.Google Scholar
  17. Murrin, C.L. (1981). Neurotransmitter receptors: neuroanatomical localization through autoradiography. Int. Review of Neurobiol. 22, 111–171.CrossRefGoogle Scholar
  18. Palacios, J., Niehoff, D., Kuhar, M. (1981). Receptor autoradiography with tritium-sensitive film. Potential for computerized densitometry. Neurosci. Lett. 25, 101–105.PubMedGoogle Scholar
  19. Pimoule, C., Schoemaker, H., Javoy-Agid, F., Scatton, B., Agid, Y. and Langer, S.Z. (1983). Decrease in 3H-cocaine binding to the dopamine transporter in Parkinson’s disease. Europ. J. Pharmacol. 95, 145–146.CrossRefGoogle Scholar
  20. Raisman, R., Briley, M.S. and Langer, S.Z. (1980). Specific tricyclic antidepressant binding sites in rat brain characterized by high affinity 3H-imipramine binding. Europ. J. Pharmacol. 61, 373–380.CrossRefGoogle Scholar
  21. Scatton, B., Dubois, A. and Cudennec, A. (1984). Autoradiographic localization of dopamine receptors in the spinal cord of the rat using 3H-N-propylnorapomorphine. J. Neural Transm. 59, in press.Google Scholar
  22. Scatton, B., Simon, H., Le Moal, M. and Bischoff, S. (1980). Origin of dopaminergic innervation of the rat hippocampal formation. Neurosci. Lett. 18, 125–131.CrossRefPubMedGoogle Scholar
  23. Schoemaker, H., Pimoule, C., Arbilla, S., Scatton, B., Javoy-Agid, F., Agid, Y. and Langer, S.Z. (1984). Sodium dependent 3H-cocaine binding associated with dopamine uptake sites parallels dopaminergic denervation in Parkinson’s disease. Submitted.Google Scholar
  24. Seeman, P. (1980). Brain dopamine receptors. Pharmacol. Reviews 32, 229–313.Google Scholar
  25. Steele, J.C., Richardson, J.C. and Olzewski, J. (1964). Progressive supranuclear palsy. A heterogeneous degeneration involving the brain stem, basal ganglia and cerebellum with vertical gaze and pseudobulbar palsy, nuchal dystonia and dementia. Arch. Neurol. 10, 333–343.PubMedGoogle Scholar
  26. Unnerstall, J.R., Niehoff, D.L., Kuhar, M.J. and Palacios, J.M. (1982). Quantitative receptor autoradiography using 3H-ultrofilm: application to multiple benzodiazepine receptors. J. Neurosci. Meth. 6, 59–73.CrossRefGoogle Scholar
  27. Versteeg, D.H., Van der Gugten, J., De Jong, Z. and Palkovits, M. (1976). Regional concentrations of noradrenaline and dopamine in rat brain. Brain Res. 113, 563–574.CrossRefPubMedGoogle Scholar
  28. Young, W.S. and Kuhar, M.J. (1979). A new method for receptor autoradiography: 3H-opioid receptor labelling in mounted tissue sections. Brain Res. 179, 255–270.CrossRefPubMedGoogle Scholar

Copyright information

© The Wenner-Gren Centre 1985

Authors and Affiliations

  • B. Scatton
    • 1
  • A. Dubois
    • 1
  • A. Camus
    • 1
  • F. Javoy-Agid
    • 1
  • N. R. Zahniser
    • 1
  • M. L. Dubocovich
    • 1
  • A. Cudennec
    • 1
  1. 1.Biochemical Pharmacology GroupSynthélabo—L.E.R.S.BagneuxFrance

Personalised recommendations