Skip to main content

Cytofluorimetric Scanning: A Quantitative Method to Study Axonal Transport

  • Chapter
Quantitative Neuroanatomy in Transmitter Research

Abstract

The neuron is a specialized cell, which has one or more long processes. One of these, the axon, may assume an impressive length (up to 1 m) relative to the perikaryon ( ~ 100 μm). The perikaryon is the metabolic center of the cell, where macromolecules and organelles are manufactured, products that are exported into the axon, to undergo axonal transport towards the nerve ending. Retrograde axonal transport also occurs, and this bidirectional phenomenon, intra-axonal transport, is of vital importance for the function of the neuron (cf. Grafstein and Forman 1980, Dahlström 1983). It has therefore been the subject of a number of investigations that have dealt with e.g. the influence of various experimental procedures on amount of transported material or rate of transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Carlson, S.S. and Kelly, R.B. (1980). An antiserum specific for cholinergic synaptic vesicles from electric organ. J. Cell Biol. 87, 98.

    Article  CAS  PubMed  Google Scholar 

  • Corrodi, H. and Jonsson, G. (1967). The formaldehyde fluorescence method for the histochemical demonstration of biogenic amines. A review of the methodology. J. Histochem. Cytochem. 15, 65.

    Article  CAS  Google Scholar 

  • Dahlstrom, A. (1965). Observations on the accumulation of noradrenaline in the proximal and distal parts of peripheral adrenergic nerves after compression. J. Anat. (Lond.) 99, 677.

    CAS  Google Scholar 

  • Dahlstrom, A. (1983). Presence, metabolism, and axonal transport of transmitters in peripheral mammalian axons. In Hand- book of Neurochemistry (ed. A. Lajtha). Plenum Press, New York, 5, 405.

    Google Scholar 

  • Dahlstrom, A. and Haggendal, J. (1966). Studies on the transport and life-span of amine storage granules in a peripheral adrenergic neuron system. Acta Physiol. Scand. 67, 278.

    Article  CAS  PubMed  Google Scholar 

  • Dahlstrom, A., Haggendal, J. and Larsson, P.-A. (1975). On the noradrenaline loading in axonal amine storage granules in rat crushed sciatic nerves. Acta Physiol. Scand. 94, 451.

    Article  CAS  PubMed  Google Scholar 

  • Grafstein, B. and Forman, D.S. (1980). Intracellular transport in neurons. Physiol. Review 60, 1167.

    CAS  Google Scholar 

  • Häggendal, J. (1980). Axonal transport of dopamine-β- hydroxylase to rat salivary glands: studies on enzymatic activity. J. Neural Transm. 47, 163.

    Article  PubMed  Google Scholar 

  • Johnson, G.D. and Gloria de Nogueira Aranjo, M. (1981). A simple method of reducing the fading of immunofluorescence during microscopy. J. Immunol. Meth. 43, 349.

    Article  CAS  Google Scholar 

  • Jonsson, G. (1969). Microfluorimetric studies on the formaldehyde-induced fluorescence of noradrenaline in adrenergic nerves of the rat iris. J. Histochem. Cytochem. 17, 714.

    Article  CAS  PubMed  Google Scholar 

  • Jonsson, G. (1971). Quantitation of fluorescence of biogenic amines. Prog. Histochem. Cytochem. 2, 299.

    Article  Google Scholar 

  • Larsson, P.-A., Goldstein, M. and DahlstrBöm, A. (1984). A new methodological approach for studying axonal transport. J. Histochem. Cytochem. 32, 7.

    Article  CAS  PubMed  Google Scholar 

  • Löfström, A., Jonsson, G. and Fuxe, K. (1976). Microfluorimetric quantitation of catecholamine fluorescence in rat median eminence. I. Aspects on the distribution of dopamine and noradrenaline nerve terminals. J. Histochem. Cytochem. 24 415.

    PubMed  Google Scholar 

  • Nagatsu, I., Kondo, Y., Kato, T. and Nagatsu, T. (1976). Retrograde axoplasmic transport of inactive dopamine- -hydroxy- lase in sciatic nerves. Brain Res. 116, 277.

    Article  CAS  PubMed  Google Scholar 

  • Schipper, J., Tilders, F.J.H. and Ploem, J.S. (1978). Microfluorimetric scanning of sympathetic nerve fibres. An improved method to quantitate formaldehyde-induced fluorescence of biogenic amines. J. Histochem. Cytochem. 26, 1057.

    CAS  PubMed  Google Scholar 

  • Wooten, G.F. and Coyle, J.T. (1973). Axonal transport of catecholamine synthesizing and metabolizing enzymes. J. Neuro- chem. 20, 1361.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 1985 The Wenner-Gren Centre

About this chapter

Cite this chapter

Dahlström, A., Larsson, PA. (1985). Cytofluorimetric Scanning: A Quantitative Method to Study Axonal Transport. In: Agnati, L.F., Fuxe, K. (eds) Quantitative Neuroanatomy in Transmitter Research. Wenner-Gren Center International Symposium Series. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-08171-4_21

Download citation

Publish with us

Policies and ethics