Skip to main content

Image Analysis of Catecholamine Fluorescence and Immunofluorescence in Studies on Blood Vessel Innervation

  • Chapter
Book cover Quantitative Neuroanatomy in Transmitter Research

Abstract

Quantitative measurement of fluorescence has become increasingly valuable in neuroscience, particularly in the study of biogenic amines. Some semiquantitative methods have contributed valuable data on sympathetic nerves. These have generally involved either counting fluorescent nerve profiles in the light microscope, or making visual estimates of nerve density or fluorescence intensity (see for example, Malmfors, 1965; Dahlstrom et al., 1966; Bevan et al., 1972; Gerová et al., 1974; Thorbert et al., 1978). However, these approaches are limited in sensitivity and rely on subjective judgements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amenta, F., Mioni, M.C., and Napoleone, P. (1983). The autonomic innervation of the vasa nervorum. J. Neural Transmission 58, 291–297.

    Article  CAS  Google Scholar 

  • Bacopoulos, N.G., Bhatnagar, R.K., Schnute, W.J., and Van Orden, L.S. (1975). On the use of the fluorescence histochemical method to estimate catecholamine content in brain. Neuropharmacology, 14, 291–299.

    Article  CAS  PubMed  Google Scholar 

  • Bevan, J.A., Bevan, R.D., Purdy, R.E., Robinson, C.P., Su, C., and Waterson, J.G. (1972). Comparison of adrenergic mechanisms in an elastic and a muscular artery of the rabbit. Circ.Res., 30, 541–548.

    Article  CAS  PubMed  Google Scholar 

  • Caspersson, T., Hillarp, N-A., and Ritzen, M. (1966). Fluorescence microspectrophotometry of cellular catecholamines and 5-hydroxytryptamine. Exp. Cel 1.Res., 42, 415–428.

    Article  CAS  Google Scholar 

  • Coons, A.H., Leduc, E.H., and Conolly, J.M. (1955). Studies on antibody production. 1. A method for the ‘histochemical demonstration of specific antibody and its application to a study of the hyperimmune rabbit. J. exp. Med., 102, 49–60.

    CAS  PubMed  Google Scholar 

  • Cowen, T., and Burnstock, G. (1980). Quantitative analysis of the density and pattern of adrenergic innervation of blood vessels. Histochemistry, 66, 19–34.

    Article  CAS  PubMed  Google Scholar 

  • Cowen, T., and Burnstock, G. (1982). Image analysis of catecholamine fluorescence. Brain Res. Bull., 9, 81–87.

    Article  CAS  PubMed  Google Scholar 

  • Cowen, T., and Burnstock, G. (1984a). Image analysis can compensate for fading in measuring FITC-immunof luorescence. Histochemistry, submitted for publication.

    Google Scholar 

  • Cowen, T., Haven, A.J., and Burnstock, G. (1984b). Pontamine sky blue: a counter-stain for background autofluorescence in catecholamine fluorescence and immunohistochemistry. Histochemistry, submitted for publication.

    Google Scholar 

  • Dählström, A., Häggendal, J., and Hökfelt, T. (1966). The noradrenaline content of the varicosities of sympathetic adrenergic nerve terminals in the rat. Acta physiol.scand., 67, 289–294.

    Article  PubMed  Google Scholar 

  • Doležel, S. (1973). Uber die Variabilität der adrenergen Innervation der groß en Gefäße. Acta anat., 85, 123–132.

    Article  PubMed  Google Scholar 

  • Furness, J.B., and Costa, M. (1975). The use of glyoxylic acid for the fluorescence histochemical demonstration of peripheral stores of noradrenaline and 5-hydroxytryptamine in whole mounts. Histochemistry, 41, 335–352.

    Article  CAS  PubMed  Google Scholar 

  • Gallen, D.D., Cowen, T., Griffith, S.G., Haven, A.J., and Burnstock, G. (1982). Functional and non-functional perivascular nerve-smooth muscle transmission in the renal arteries of the rabbit and guinea-pig: a developmental study. Blood Vessels, 19, 237–246.

    CAS  PubMed  Google Scholar 

  • Gerovā, M., Gero, J., Doležel, S., and Konecny, M. (1974). Postnatal development of sympathetic control in canine femoral artery. Physiol.Bohemoslov., 23, 289–295.

    PubMed  Google Scholar 

  • Griffith, S.G., Crowe, R., Lincoln, J., Haven, A.J., and Burnstock, G. (1982). Regional differences in the density of perivascular nerves and varicosities, noradrenaline content and responses to nerve stimulation in the rabbit ear artery. Blood Vessels, 19, 41–52.

    CAS  PubMed  Google Scholar 

  • Jonsson, G., (1971). Quantitation of fluorescence of biogenic amines. Prog. Histochern. Cytochem., 2, 299–334.

    Google Scholar 

  • de la Lande, and Waterson, J.G., (1968). Modification of autofluorescence in the formaldehyde-treated rabbit ear artery by Evans Blue. J. Histochem. Cytochem., 16, 281.

    Article  PubMed  Google Scholar 

  • Lewis, R.J., and Tatken, R.L. (1982) Registry of toxic effects of chemical substances (1980 edition, vol.2) p.142. US Department of Health and Human Services.

    Google Scholar 

  • Lindvall, O., and Björklund, A. (1974). The glyoxylic acid fluorescence histochemical method: a detailed account of the methodology for the visualisation of central catecholamine neurons. Histochemistry, 97–127.

    Google Scholar 

  • Löfström, A., Jonsson, G., Wiesel, F.A., and Fuxe, K. (1976). Microfluorimetric quantitation of catecholamine fluorescence in rat median eminence. II. Turnover changes in hormonal states. J. Histochem. Cytochem., 24, 430–442.

    Article  PubMed  Google Scholar 

  • Malmfors, T. (1965). Studies on adrenergic nerves. Acta. Physiol. Scand., 64, Suppl.248, 1–93.

    Article  Google Scholar 

  • McGinty, J.F., Koda, L.Y., and Bloom, F.E. (1979). A novel fluorescent marker of CNS vasculature used in combination with monoamine histofluorescence. Neurosci. Abstr., 5, 344.

    Google Scholar 

  • McGinty, J.F., Milner, T.A., and Loy, R. (1982). Association of sympathetic axons in denervated hippocampus to intracerebral vascu- lature. 1. Fluorescence histochemistry combining glyoxylic acid and pontamine sky blue. Anat.Embryol.(Berl)., 164, 95–100.

    CAS  Google Scholar 

  • Ritzen, M. (1966). Quantitative fluorescence microspectrophotometry of catechol amine-formaldehyde products. Exp.Cell. Res., 44, 505–520.

    Article  CAS  PubMed  Google Scholar 

  • Schipper, J., Tilders, F.J.H., and Ploem, J.S. (1978). Microfluorimetric scanning of sympathetic nerve fibres; an improved method to quantitate formaldehyde-induced fluorescence of biogenic amines. J. Histochern. Cytochem., 26, 1057–1066.

    Article  CAS  Google Scholar 

  • Schipper, J., Tilders, F.J.H., and Ploem, J.S. (1980). Extraneuronal catecholamine as an index for sympathetic activity in the iris of the rat: a scanning microfluorimetric study. In: Histochemistry and cell biology of autonomic neurones, SIF cells and paraneurons. Eds. Eranko, O., Soinila, S. and Paivarinta, H. Raven Press, New York. pp. 745–751.

    Google Scholar 

  • Schipper, J., Tilders, F.J.H., and Mulder, A.H. (1980). Extraneuronal catecholamine in the iris of the rat: a consequence of nonsynaptic neurotransmission? Neuroscience, 5, 745–751.

    Article  CAS  PubMed  Google Scholar 

  • Sternberger, L.A. (1974). The unlabeled antibody enzyme method. In: Immunocytochemi.stry. Prentice Hall Inc. New Jersey, pp. 129–171.

    Google Scholar 

  • Thorbert, G., Alm, P., Owman, Ch., Sjoberg, N-O., and Sporrong, B. (1978). Regional changes in structural and functional integrity of myometrial adrenergic nerves in pregnant guinea-pig, and their relationship to the localisation of the conceptus. Acta physiol.scand., 103, 120–131.

    Article  CAS  PubMed  Google Scholar 

  • Tilders, F.J.H., Ploem, J.S., and Smelik, P.G. (1974). Quantitative microfluorimetric studies on formaldehyde-induced fluorescence of 5-hydroxytryptamine in the pineal gland of the rat. J. Histochern.Cytochem., 22, 967–975.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 1985 The Wenner-Gren Centre

About this chapter

Cite this chapter

Cowen, T., Burnstock, G. (1985). Image Analysis of Catecholamine Fluorescence and Immunofluorescence in Studies on Blood Vessel Innervation. In: Agnati, L.F., Fuxe, K. (eds) Quantitative Neuroanatomy in Transmitter Research. Wenner-Gren Center International Symposium Series. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-08171-4_15

Download citation

Publish with us

Policies and ethics