Skip to main content

Summary.

The results of a survey on tool condition monitoring are reported. Both tool wear and tool failure are considered and the differences between DIRECT and INDIRECT methods highlighted. Direct methods usually involve some actual measurements of the wear or failure and are, therefore, mainly classified as ‘off-line’ methods. Indirect methods are normally associated with some fundamental aspect of the machining process and, while being somewhat more complex, can be considered as ‘on-line’ techniques. The indirect online methods can be subdivided into those associated with static phenomena e.g. steady state forces and temperature, and those associated with dynamic aspects, such as vibrations and acoustic emission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References.

  1. Optimisation of The Machining Process and Overall System Concepts. Frost-Smith, E.H.; Marten, H.R. Proc. MTIRA Conf. on Adaptive Control of Machine Tools, Paper No.7, April 1970.

    Google Scholar 

  2. A Study on Adaptive Control in an N.C. Milling Machine. Yamazaki, K.; Yamada, A.; Sawai, N. Annals of CIRP v23/1, 1974, pl53–154.

    Google Scholar 

  3. Sensor zum Erfassen des Freiflachenverschleises an Drehwerkzeugen. Essel, K.; Otto, F.; Kirchner, W. VDI-Z 116 n17, p1427–29, 1974.

    Google Scholar 

  4. Recognition and Control of the Morphology of Tool Failures. Matsushima, K.; Kawabata, T.; Sata, T. Annals of CIRP v28/1, 1979, p43–47.

    Google Scholar 

  5. Sensors of Tool Life for Optimization of Machining. Takeyama, H.; Doi, Y.; Mitsuoka, T.; Sekiguchi, H. Advances in Mach. Tool Des. Res. 1967 No 1 p 191–208.

    Google Scholar 

  6. Constriction-Resistance Concept Applied to Wear Measurement of Metal Cutting Tools. Wilkinson, A.J. Proc. IEE v118 n2, Feb.1971, p381–386.

    Google Scholar 

  7. New Attempts for Short Time Tool Life Testing. Uehara, K. Annals of CIRP v22/1, 1973, p23–24.

    MathSciNet  Google Scholar 

  8. Wear Studies of Irradiated Carbide Cutting Tools. Colding, B.; Erwall, L.G. Nucleonics, Feb.1953, p46–49.

    Google Scholar 

  9. Micro-Isotope Tool Wear Sensor. Cook, N.H.; Subramanian, K. Annals of CIRP v27/1, 1978, p73–78.

    Google Scholar 

  10. A New Concept in Flexible Automation. Stauffer, R.N. Manufacturing Engineering, v80 n1, Jan.1978, p66–68.

    MathSciNet  Google Scholar 

  11. In Process Tool Wear Sensors for Cutting Operations. MLcheletti, G.F.; Koenig, W.; Victor, H.R. Annals of CIRP v25/2, 1976, p483–496

    Google Scholar 

  12. Continuous Measuring of Flank Wear. Stoferle, T.; Bellmann, B. Proc. 16th Int MTDR Conf, Birmingham 1975 p 573–578.

    Google Scholar 

  13. Measuring Tool Wear On-Line: Some Practical Considerations. Jetley, S. Manuf. Eng. v93 nl, July 1984, p55–60.

    Google Scholar 

  14. Sensoren zur Erfassung von Prozesskenngrssen bei der Drehbearbeitung. Spur, G.; Leonards, F. Annals of CIRP, v24/1, 1975, p349–354.

    Google Scholar 

  15. Exploratory Investigation of Laser Methods for Grinding Research. Murray, H. Annals of CIRP, v22/1, 1973, p137–138.

    Google Scholar 

  16. A New Sensor of Surface Roughness for Process Control System. Chiersorin, P; Lonardo, P.M. SME Tech Paper Ser MS for WESTEC Conf., Los Angeles, Calif. Mar. 14–17 Book 1 Pap MS 77–216 16p. Publ SME, Dearborn, Michigan.

    Google Scholar 

  17. When Does the Cutting Tool Crack? Pekelharing, A.J.; Orelio, J.M.B. North American Manuf. Res. Conf. Proc. 8th, May 19–21, 1980. Univ of Mo-Rolla p8–11. Publ. SME, Dearborn, Michigan.

    Google Scholar 

  18. Temperatures in Metal Cutting, Lenz, E. ASM 1968, 1, No 4, 410 p 553–567 Metal Abstracts on Int. Conf. on Manuf. Tech.

    Google Scholar 

  19. A Review of Experimental and Theoretical Technqiues for Assessing Cutting Temperatures. Barrow, G. Annals of CIRP v22/2, 1973, p203–211.

    Google Scholar 

  20. Cutting Temperature Versus Tool Wear. Colwell, L.V. Annals of CIRP v24/1, 1975, p73–76.

    MathSciNet  Google Scholar 

  21. A Study of the Relationship Between Remote Thermocouple Temperatures and Tool Wear in Machining. Groover, M.P.; Karpovich, R.J.; Levy E.K. Int. J. Prod. Res. 1977 v25 n2, p 129–141.

    Article  Google Scholar 

  22. Cutting Temperature As An Approach to On-Line Measurement of Tool Wear. Moshref, Sherif B. SME Tech. Paper SER IQ 80–304 1980.

    Google Scholar 

  23. A Study of the Effects of Tool Flank Wear on the Tool Chip Interface Temperature. 01berts, D.R. Trans. of ASME J. of Eng. for Ind. May 1959 p 152–158.

    Google Scholar 

  24. On the Reliability of the Cutting Temperature for Monitoring Tool Wear. Zakaria, A.A.; E1 Gomayel, J.I. Int. J. Wach. Tool Des. Res., v15, 1975, p195–208.

    Article  Google Scholar 

  25. The On-Line Control of Cutting Conditions Using Direct Feedback. Shillam, N.F. Proceedings of the 12th MTDR Conf, 15–17 Sept, 1971, p15–22.

    Google Scholar 

  26. Studies of Cutting Temperature Control Applied to a Lathe Spindle Speed. Billett, R.A. Advances in MTDR, 1968, part 2, p1273–1287.

    Google Scholar 

  27. Control of Tool Wear During Metal Cutting Using a Computer and On-Line Measurements. Hinds, B.K. Int. J. Prod. Res., v 15 n 3, 1977, p291–301.

    Article  Google Scholar 

  28. A Critical Review of Sensors for Unmanned Machining. Tlusty, J.; Andrews, G.C., Annals of CIRP, v32/2, 1983, p1–10.

    Article  Google Scholar 

  29. Automatic Tool Wear Monitoring in N.C. Turning. Uehara, K. Annals of CIRP v28/1, 1979, p39–42.

    Google Scholar 

  30. Methods for Sensing the Rate of Tool Wear. Colwell, L.V. Annals of CIRP v19/4, 1971, p647–651.

    Google Scholar 

  31. Analytical Strategies for Automatic Tracking of Tool Wear. Colwell, L.V.; Mazur, J.C.; De Vries W.R. North American Metalwork & Research Conf. Proc. 6th April 16–19, 1978 (Univ. of Fla. Gainsville) Publ. SME Dearborn, Michigan.

    Google Scholar 

  32. Relationships Between Tool Forces and Flank Wear. Taraman, K.; Swando, R; Yamauchi, W. SME Tech. Pap. nMR74704 for meet Mar 11–15, 1974, 15p.

    Google Scholar 

  33. Feed Force Monitoring for Operation Security and Reliability. Wolf, W.; Magadanz, P. SME Tech. Pap. nIQ81–161 for meet Apr. 27–30, 1981.

    Google Scholar 

  34. Tool Wear and Cutting Forces in Steel Turning. Mlcheletti, G.F.; de Filippi, A.; Ippolito, R. Annals of CIRP v16/4, Sept. 1968, p353–360.

    Google Scholar 

  35. Correlations Between Cutting Force Components and Tool Wear. Konig, W.; Langhammer, K.; Schemmel, H.U. Annals of CIRP v21/1, 1972, p19–20.

    Google Scholar 

  36. Sensing of Drill Wear and Prediction of Drill Life. Subramanian, K.; Cook, N.H. Trans. of ASME, J. of Eng. for Ind., May 1977, p 295–301.

    Google Scholar 

  37. Promess, Ingenieurburo, Schaffhausener Strasse 44–52, 1000 Berlin 42, Germany (Manufacturers)

    Google Scholar 

  38. Tool Breakage Problem Solved With Power Factor Monitor. Anon., Cutting Tool Eng., v36 n5, Oct 1984, page 12.

    Google Scholar 

  39. In-Process Detection of Tool Breakages. Matsushima, K; Sata, T. J. Fac. Eng. Univ. Tokyo, Series A, v17, 1979 p 20–21.

    Google Scholar 

  40. Tool Wear Sensors. Cook, N.H. Wear, v62 n1, July 1980, p49–57.

    Google Scholar 

  41. Cutting Tool Sensors. Powell, J.W.; Kline, A.W.; Cosic, J.E.; Mayer, J.E.; Herko, F.M. The Carbide & Tool Journal, May–June 1985, v17, part 3, p12–17.

    Google Scholar 

  42. What Sound Can be Expected from a Worn Tool. Weiler, E.J.; Schrier, H.M.; Weichbrodt, B. ASME-Paper 68-WA/Prod-4 for meeting Dec 1–5 1968 10p.

    Google Scholar 

  43. An Approach to On-line Measurement of Tool Wear by Spectrum Analysis. del Taglia, A.; Portunato, S.; Toni, P. Proc. of Machine Tool Des. & Res. Conf. 17th., 1976, p141–148.

    Google Scholar 

  44. Influence of Lathe Tool Wear on the Vibrations Sustained in Cutting. Martin, P.; Mutel, B.; Drapier, J.P. Int. Mach. Tool Design & Res Conf. 15th Proc. Sep 18–20, 1974, p251–257. Publ by Halstead Press, New York.

    Google Scholar 

  45. Variation in Friction Coefficient with Tool Wear. Pandit, S.M.; Kashou, S. Wear, v84, 1983, p 65–79.

    Google Scholar 

  46. Contribution to the On-line Identification of the Cutting Process. Peklenik, J.; Sel jak, Z.; Leskovar, P.; Justin, B. Annals of CIRP v22/1, 1973, p43–44.

    Google Scholar 

  47. Measurements of Dynamic Cutting Forces in the Cutting Process, a New Sensor for In-Process Measurements. Lindstrom, B.; Lindberg, B. Proc. 24th MTDR Conference, 1983, p 137–142.

    Google Scholar 

  48. Acoustic Emission During Orthogonal Metal Cutting. Dornfeld, D.A.; Kannatey Asibu, E. Int. J. Mech. Sci., v22, p285–296. Publ. Pergamon Press Ltd. 1980.

    Article  Google Scholar 

  49. Application of Acoustic Emission Monitoring to Sensing of Wear and Breakage of Cutting Tool. Moriwaki, T. Bull Jpn Soc of Prec Eng., v17 n3, Sept.1983., p 153–160.

    Google Scholar 

  50. Acoustic Emission Sensing of Tool Wear in Metal Cutting — A General Overview and Problem Areas. Kannatey Asibu, E. North American Metal Work Research Conf. 10th. 24–25 May, 1982. Publ SME Dearborn Mich.

    Google Scholar 

  51. An Application of Acoustic Emission Measurement to In-Process Sensing of Tool Wear. Iwata, K.; Moriwaki, T. Annals of CIRP. v25/1, 1977, p21–26.

    Google Scholar 

  52. In-Process Detection of Cutting Tool Damage by Acoustic Emission Measurement. Inasaki, I.; Yonetsu, S. Proc 22nd MTDR Conf, 1981, p261–268

    Google Scholar 

  53. In-Process Detection of Tool Breakage by Monitoring Acoustic Emission. Kakino, Y. Proc. of an International conf. 15–17th Sept 1980 ‘Cutting Tool Mat’1’ Ft. Mitchell Kentucky. p25–39.

    Google Scholar 

  54. In Process Detection of Thermal Crack of Cutting Tool by Making Use of Acoustic Emission. Kakino, Y.; Suizu, H.; Hashitani, M.; Yamada, T.; Yoshioka, H.; Fujiwara, A. Bull Jpn Soc of Prec Eng., v17 n4, 1983, p241–246.

    Google Scholar 

  55. Detection for Cutting Tool Fracture by Acoustic Emission Measurement. Moriwaki, T. Annals of CIRP. v29/1, 1980, p35–40.

    Article  Google Scholar 

  56. An Investigation of Orthogonal Cutting Via Acoustic Emission Signal Analysis. Dornfeld, D. North Am. Metal. Res. Conf. 7th. Univ of Michigan, Ann Arbor, May 13–16, 1979, p270–274 Publ. SME Dearborn, Mich.

    Google Scholar 

  57. Quantative Relationships for Acoustic Emission from Orthogonal Metal Cutting. Kennatey-Asibu, E.; Dornfeld, D.A. Transactions of the ASME J. of Eng. for Ind. v103, August 1981, p330–340.

    Article  Google Scholar 

  58. A Study of Tool Wear Using Statistical Analysis of Metal Cutting Acoustic Emission. Kennatey Asibu, E.; Dornfeld, D.A. Wear, v76, (1982), p247–261.

    Article  Google Scholar 

  59. Experimental Studies of Tool Wear Via Acoustic Emission Analysis. Lan, M.S.; Dornfeld, D.A. 10th North. Am. Wet. & Res. Conf., 24–25 May 1982 McMaster Univ., Publ. by SME Dearborn, Mich. p305–311.

    Google Scholar 

  60. Acoustic Emission Sensing of Tool Wear in Peripheral Milling. Diei, E.N.; Dornfeld, D.A. A.E. Monitoring & Analysis in Manufacturing presented at the Winter Annual Meeting of ASME. ASME Prod Eng Div Publ P.E.D. v14, Acoust. Emiss. Monit and Anal. in Manuf., New Orleans, L.A., USA. Dec 9–14 1984, Publ by ASME New York, USA., p 107–124.

    Google Scholar 

  61. Acoustic Emission and the Mechanics of Metal Cutting. Schmenk, M.J. A.E. Monitoring & Analysis in Manufacturing presented at the Winter Annual Meeting of ASME. ASME Prod Eng Div Publ P.E.D. v14, Acoust. Emiss. Monit and Anal. in Manuf., New Orleans, L.A., USA. Dec 9–14 1984, Publ by ASME New York, USA. p 95–105.

    Google Scholar 

  62. Processing Acoustic Emission Signal Data for Characterising Cutting Tool Wear and Chip Management. Messaritis, V.; Borthwick, W.K.D. Computer Aided Production Engineering Conf., Edingburgh, Scotland, Apr.1986. Publ Mech Eng Publications Ltd., for Inst of Mech Eng. p261–268.

    Google Scholar 

  63. Acoustic Emission of a Cutting Process. Grabec, I.; Leskovar, P. Ultrasonics, v15 n1, 1977, p17–20

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 1986 Department of Mechanical Engineering University of Manchester Institute of Science and Technology

About this chapter

Cite this chapter

Lister, P.M., Barrow, G. (1986). Tool Condition Monitoring Systems. In: Davies, B.J. (eds) Proceedings of the Twenty-Sixth International Machine Tool Design and Research Conference. Palgrave, London. https://doi.org/10.1007/978-1-349-08114-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-08114-1_36

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-08116-5

  • Online ISBN: 978-1-349-08114-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics