Skip to main content

Benzodiazepine Receptors and their Ligands

  • Chapter
Mechanisms of Drug Action

Abstract

Cell-to-cell communication in the nervous system is brought about mainly by the exchange of chemical signals — the neurotransmitters or neuromodulators. A biological response is elicited by the interaction of these signals with highly selective receptors on target cells which discriminate between various neurotransmitters. Psychoactive drugs interfere in various ways with chemical signalling in the central nervous system, frequently producing their specific effects by interacting with distinct proteins or glycoproteins in the target ceil membrane — the pharmacological receptors (Ariëns, 1983; Snyder, 1984). The benzodiazepines are no exception.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albright, J. D., Moran, D. B., Wright, W. B., Collins, J. B., Beer, B., Lippa, A. S. and Greenblatt, E. N. (1981). Synthesis and anxiolytic activity of 6-(substituted-phenyl)-1,2, 4-triazolo (4,3-b)pyridazines. J. Med. Chem., 24, 592

    Article  PubMed  CAS  Google Scholar 

  • Anderson, R. A. and Mitchell, R. (1983). Multiple benzodiazepine binding sites in rat pituitary. Br. J. Pharmacol., 79, 290P

    Article  Google Scholar 

  • Anderson, R. A. and Mitchell, R. (1984). Benzodiazepines potentiate the effect of muscimol on prolactin secretion in vitro. Br. J. Pharmacol., 82, 343P

    Article  Google Scholar 

  • Anholt, R. R., Murphy, K. M. M., Mack, G. and Snyder, S. H. (1984). Peripheral-type benzodiazepine receptors in the central nervous system: localization to olfactory nerves. J. Neurosci., 4, 593

    PubMed  CAS  Google Scholar 

  • Ari’ëns, E. J. (1983). Receptors: the materialization of a concept. Pharmac. Weekbl. Sci Ed., 5, 121

    Article  Google Scholar 

  • Barker, J. L., Gratz, E., Owen, D. G. and Study, R. E. (1984). In Bowery, N. G. (Ed.), Actions and Interactions of GABA and Benzodiazepines, pp. 203–216. Raven Press, New York

    Google Scholar 

  • Barrnett, A., Billard, W. and Iorio, L. C. (1983). Studies on the specificity of halazepam, a benzodiazepine with reduced dependence liability. Fed. Proc., 42, 309

    Google Scholar 

  • Battersby, M. K., Richards, J. G. and Möhler, H. (1979). Benzodiazepine receptor: photo-affinity labelling and localization. Europ. J. Pharmacol., 57, 277

    Article  CAS  Google Scholar 

  • Beaumont, K., Cheung, A. K., Geller, M. L. and Fanestil, D. D. (1983). Inhibitors of peripheral-type benzodiazepine receptors present in human urine and plasma ultrafiltrates. Life Sci., 33, 1375

    Article  PubMed  CAS  Google Scholar 

  • Beaumont, K., Healy, D. P. and Fanestil, D. D. (1984). Peripheral-type benzodiazepine (BZD) receptors in the rat kidney: localization by autoradiography. Fed. Proc., 43, 691

    Google Scholar 

  • Benavides, J., Malgouris, C., Imbault, F., Begassat, F., Uzan, A., Renault, C., Dubroeucq, D., Gueremy, C. and Le Fur, G. (1983a). ‘Peripheryl-type’ benzodiazepine binding sites in rat adrenals: binding studies with [3H]-PK 11195 and autoradiographic localization. Arch Int. Pharmacodyn., 266, 38

    PubMed  CAS  Google Scholar 

  • Benavides, J., Quarteronet, D., Imbault, F., Malgouris, C., Uzan, A., Renault, C., Dubroeucq, M.C., Gueremy, C. and Le Fur, G. (1983b). Labelling of ‘peripheryl-type’ benzodiazepine binding sites in the rat brain by using [3H]PK 11195, an isoquinoline carboxamide derivative: kinetic studies and autoradiographic localization. J. Neurochem., 41, 1744

    Article  PubMed  CAS  Google Scholar 

  • Biscoe, T. J. and Fry, J. P. (1984). Actions and Interactions of GABA and Benzodiazepines, pp. 217–237. Raven Press, New York

    Google Scholar 

  • Blanchard, J. C., Boireau, A., Garret, C. and Julou, L. (1979). In vitro and in vivo inhibition by zopiclone of benzodiazepine binding to rodent brain receptors. Life Sci., 24, 2417

    Article  PubMed  CAS  Google Scholar 

  • Blount, J. F., Fryer, R. K., Gilman, N. W. and Todaro, L. J. (1973). Quinazolines and 1,4-benzodiazepines 92. Conformational recognition of the receptor by 1,4-benzodiazepines. Molec. Pharmacol., 24, 425

    Google Scholar 

  • Bonetti, E. P., Pieri, L., Cumin, R., Schaffner, R., Pieri, M., Gamzu, E. R., Müller, R. K. M. and Haefely, W. (1982). Benzodiazepine antagonist Ro 15–1788: neurological and behavioural effects. Psychopharmacology, 78, 8

    Article  PubMed  CAS  Google Scholar 

  • Bowery, N. G., Hill, D. R., Hudson, A. L., Price, G. W., Turnbull, M. J. and Wilkin, G. P. (1984). In Bowery, N. G. (Ed.), Actions and Interactions of GABA and Benzodiazepines, pp. 81–108. Raven Press, New York

    Google Scholar 

  • Braestrup, C. and Nielsen, M. (1978). Ontogenetic development of benzodiazepine receptors in the rat brain. Brain Res., 147, 170

    Article  PubMed  CAS  Google Scholar 

  • Braestrup C. and Nielsen, M. (1982). Neurotransmitters and CNS disease, anxiety. Lancet, ii, 1030

    Article  Google Scholar 

  • Braestrup, C. and Nielsen, M. (1983). In Iversen, L. L., Iversen, S. D. and Synder, S. H. (Eds.), Handbook of Psychopharmacology, Vol. 17, pp. 285–384. Plenum Press, New York

    Google Scholar 

  • Braestrup, C., Nielsen, M. and Olsen, C. E. (1980). Urinary and brain β-carboline-3-carboxy-lates as potent inhibitors of brain benzodiazepine receptors. Proc. Natl. Acad. Sci U.S.A., 77, 2288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Braestrup, C., Schmiechen, R., Neef, G., Nielsen, M. and Petersen, E. N. (1982). Interaction of convulsive ligands with benzodiazepine receptors. Science, N. Y., 216, 1241

    Article  CAS  Google Scholar 

  • Braestrup, C. and Squires, R. F. (1977). Specific benzodiazepine receptors in rat brain characterized by high-affinity 3H-diazepam binding. Proc. Natl. Acad. Sci. U.S.A., 74, 3805

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brown, C. L., Jones, B. J., Martin, I. L. and Oakley, N. R. (1984). Efficacy at the benzodiazepine receptor: in vivo studies with pyrazoloquinolinones. Br. J. Pharmacol, 82, 236P

    Google Scholar 

  • Brown, C. L. and Martin, I. L. (1983). Photoaffinity labelling of the benzodiazepine receptor cannot be used to predict ligand efficacy. Neurosci. Lett., 35, 37

    Article  PubMed  CAS  Google Scholar 

  • Brown, C. L. and Martin, I. L. (1984). Autoradiographic localization of benzodiazepine receptors in the rat pituitary gland. Europ. J. Pharmacol, 102, 563

    Article  CAS  Google Scholar 

  • Burnham, W. M., Niznik, H. B., Okazaki, M. M. and Kish, S. J. (1983). Binding of [3H]-flunitrazepam and [3H] Ro 5–4864 to crude homogenates of amygdala-kindled rat brain: two months post-seizure. Brain Res., 279, 359

    Article  PubMed  CAS  Google Scholar 

  • Candy, J. M. and Martin, I. L. (1979). The postnatal development of the benzodiazepine receptor in the cerebral cortex and cerebellum of the rat. J. Neurochem., 32, 655

    Article  PubMed  CAS  Google Scholar 

  • Chang, L.-R. and Barnard, E. A. (1982). The benzodiazepine/GABA receptor complex: molecular size in brain synaptic membrane and in solution. J. Neurochem., 39, 1507

    Article  PubMed  CAS  Google Scholar 

  • Chang, R. S. L. and Snyder, S. H. (1978). Benzodiazepine receptors: labelling in intact animals with [3H]-flunitrazepam. Europ. J. Pharmacol., 48, 213

    Article  CAS  Google Scholar 

  • Clineschmidt, B. V., Martin, G. E. and Bunting, P. R. (1982). Anticonvulsant activity of (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801), a substance with potent anticonvulsant, central sympathomimetic and apparent anxiolytic properties. Drug Devl. Res., 2, 123

    Article  CAS  Google Scholar 

  • Comar, D., Mazière, M., Cepeda, C., Godot, J.-M., Menini, C. and Naquet, R. (1981). The kinetics and displacement of [11C]flunitrazepam in the brain of the living baboon. Europ. J. Pharmacol., 75, 21

    Article  CAS  Google Scholar 

  • Costa, E., Corda, M. G., Epstein, B., Forchetti, C. and Guidotti, A. (1983a). In Costa, E. (Ed.), The Benzodiazepines: From Molecular Biology to Clinical Practice, pp. 117–136. Raven Press, New York

    Google Scholar 

  • Costa, E., Corda, M. G. and Guidotti, A. (1983b). On a brain polypeptide functioning as a putative effector for the recognition sites of benzodiazepine and beta-carboline derivatives. Neuropharmacology, 22, 1481

    Article  PubMed  CAS  Google Scholar 

  • Cumin, R., Bonetti, E. P., Scherschlicht, R. and Haefely, W. E. (1981). Use of the specific benzodiazepine antagonist, R.15-1788, in studies of physiological dependence on benzodiazepines. Experientia, 38, 833

    Article  Google Scholar 

  • Czernik, A. J., Petrack, B., Kalinsky, H. J., Psychoyos, St., Gash, W. D., Tsai, C., Rinehart, R. K., Garnat, F. R., Lovell, R. A., Brundish, D. E. and Wade, R. (1982). CGS 8216: receptor binding characteristics of a potent benzodiazepine antagonist. Life Sci., 30, 363

    Article  PubMed  CAS  Google Scholar 

  • Darragh, A., Lambe, R., Brick, I. and O’Boyle, C. (1982). Antagonism of the central effects of 3-methyl-clonazepam. Br. J. Clin. Pharmacol., 14, 871

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davies, L. P. and Huston, V. (1981). Peripheral benzodiazepine binding sites in heart and their interaction with dipyridamole. Europ. J. Pharmacol., 73, 209

    Article  CAS  Google Scholar 

  • De Souza, E. B., Anholt, R. H., Murphy, K. M. M., Snyder, S. H. and Kuhar, M. J. (1985). Peripheral-type benzodiazepine receptors in endocrine organs: autoradiographic localization in rat pituitary, adrenal and testes. Endocrinology, 116, 567

    Article  PubMed  Google Scholar 

  • Del Zompo, M., Bocchetta, A., Corsini, G. U., Tallman, J. F. and Gessa, G.L. (1983b). In Biggio, G. and Costa, E. (Eds), Benzodiazepine Recognition Site Ligands: Biochemistry and Pharmacology, pp. 239–248. Raven Press, New York

    Google Scholar 

  • Del Zompo, M., Post, R. M. and Tallman, J. F. (1983a). Properties of two benzodiazepine binding sites in spinal cord. Neuropharmacology, 22, 115

    Article  PubMed  Google Scholar 

  • Dubnick, B., Lippa, A. S., Klepner, C. A., Coupet, J., Greenblatt, E. N. and Beer, B. (1983). The separation of 3H-benzodiazepine binding sites in brain and of benzodiazepine pharmacological properties. Pharmacol. Biochem. Behav., 18, 311

    Article  PubMed  CAS  Google Scholar 

  • Ehlert, F. J., Ragan, P., Chen, A., Roeske, W. R. and Yamamura, H. I. (1982). Modulation of benzodiazepine receptor binding: insight into pharmacological efficacy. Europ. J. Pharmacol., 78, 249

    Article  CAS  Google Scholar 

  • Ehlert, F. J., Roeske, W. R., Gee, K. W. and Yamamura, H. I. (1983). An allosteric model for benzodiazepine receptor function. Biochem. Pharmacol., 32, 2375

    Article  PubMed  CAS  Google Scholar 

  • Fallon, J. H., Loughlin, S. E. and Ribak, C. E. (1983). The islands of Calleja complex of rat basal forebrain. III. Histochemical evidence for a striato-pallidal system. J. Comp. Neurol., 218, 91

    Article  PubMed  CAS  Google Scholar 

  • Ferrero, P., Guidotti, A. and Costa, E. (1984). Increase in the Bmax of γ-aminobutyric acid-A recognition sites in brain regions of mice receiving diazepam. Proc. Natl. Acad. Sci. U.S.A., 81, 2247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fryer, R. I. (1983). In Costa, E. (Ed.), The Benzodiazepines: From Molecular Biology to Clinical Practice, pp. 7–20. Raven Press, New York

    Google Scholar 

  • Gallager, D. W., Lakoski, J. M., Gonsalves, S. F. and Rauch, S. L. (1984a). Chronic benzodiazepine treatment decreases postsynaptic GAB A sensitivity. Nature, Lond., 308, 74

    Article  CAS  Google Scholar 

  • Gallager, D.W., Mallorga, P., Oertel, W., Henneberry, R. and Tallman, J. (1981). 3H-Diazepam binding in mammalian central nervous system: a pharmacological characterization. J. Neurosci., 1, 218

    PubMed  CAS  Google Scholar 

  • Gallager, D.W., Rauch, S. L. and Malcolm, A.B. (1984b). Alterations in a low affinity GABA recognition site following chronic benzodiazepine treatment. Europ. J. Pharmacol., 98, 159

    Article  CAS  Google Scholar 

  • Gee, K. W., Brinton, R. E. and Yamamura, H. I. (1983a). CL 218 872, PK 8165 and PK 9084: selective anxiolytics that may act as partial agonists at the benzodiazepine receptor. Fed. Proc., 42, 5096

    Google Scholar 

  • Gee, K. W., Wamsley, J. K. and Yamamura, H. I. (1983b). Light microscopic autoradiographic identification of picrotoxin/barbiturate binding sites in rat brain with [35S] t-butyl-bicyclophosphothionate. Europ. J. Pharmacol., 89, 323

    Article  CAS  Google Scholar 

  • Gee, K. W. and Yamamura, H. I. (1983). In Biggio, G. and Costa, E. (Eds.), Benzodiazepine Recognition Site Ligands: Biochemistry and Pharmacology, pp. 1–9. Raven Press, New York

    Google Scholar 

  • Gehlert, D. R., Yamamura, H. I. and Wamsley, J. K. (1983). Autoradiographic localization of ‘peripheral’ benzodiazepine binding sites in the rat brain and kidney using [3H]Ro 5–4864. Europ. J. Pharmacol., 95, 329

    Article  CAS  Google Scholar 

  • Grandison, L. (1983). Actions of benzodiazepines on the neuroendocrine system. Neuropharmacology, 22, 1505

    Article  PubMed  CAS  Google Scholar 

  • Greenblatt, D. J., Shader, R. I. and Abernethy, D. R. (1983a). Current status of benzodiazepines (first of two parts). New Engl. J. Med., 309, 354

    Article  PubMed  CAS  Google Scholar 

  • Greenblatt, D. J., Shader, R. I. and Abernethy, D. R. (1983b). Current status of benzodiazepines (second of two parts). New Engl. J. Med., 309, 410

    Article  PubMed  CAS  Google Scholar 

  • Haefely, W. (1983). The biological basis of benzodiazepine actions. The benzodiazepines today — two decades of research and clinical experience. J. Psychoact. Drugs, 15, 19

    Article  CAS  Google Scholar 

  • Haefely, W. (1984). Pharmacological profile of two benzodiazepine partial agonists: Ro 16–6028 and Ro 17–1812. Clin. Neuropharmacol., Suppl. 1, 670

    Google Scholar 

  • Haefely, W., Bonetti, E. P., Burkard, W. P., Cumin, R., Laurent, J.-P., Möhler, H., Pieri, L., Polc, P., Richards, J. G., Schaffner, R. and Scherschlicht, R. (1983a). In Costa, E. (Ed.), The Benzodiazepines: From Molecular Biology to Clinical Practice, pp. 137–146. Raven Press, New York

    Google Scholar 

  • Haefely, W., Kyburz, E., Gerecke, M. and Möhler, H. (1984). Recent advances in the molecular pharmacology of benzodiazepine receptors and in the structure-activity relationship of their agonists and antagonists. In Advances in Drug Research, Vol. 14, p. 166

    Google Scholar 

  • Haefely, W., Pieri, L., Polc, P. and Schaffner, R. (1981). In Hoffmeister, F. and Stille, G. (Eds.), Handbook of Experimental Pharmacology, Vol. 55: Psychotropic Agents, Part II, pp. 13–262. Springer-Verlag, Berlin

    Google Scholar 

  • Haefely, W., Polc, P., Pieri, L., Schaffner, R. and Laurent, J.-P. (1983b). In Costa, E. (Ed.), The Benzodiazepines: From Molecular Biology to Clinical Practice, pp. 21–66. Raven Press, New York

    Google Scholar 

  • Hamor, T. A. and Martin, I. L. (1983). In Ellis, G. P. and West, G. B. (Eds.), Progr. Med. Chem., 20, 157

    Google Scholar 

  • Häring, P., Stähli, C., Schoch, P., Takács, B., Staehelin, T. and Möhler, H. (1985). Monoclonal antibodies reveal structural homogeneity of GABAA/benzodiazepine receptors in different brain areas. Proc. Natl. Acad. Sci. U.S.A., 82, 4837

    Article  PubMed  PubMed Central  Google Scholar 

  • Honoré, T., Nielsen, M. and Braestrup, C. (1984). Barbiturate shift as a tool for determination of efficacy of benzodiazepine-receptor ligands. Europ. J. Pharmacol., 100, 103

    Article  Google Scholar 

  • Hunkeler, W., Möhler, H., Pieri, L., Bonetti, E. P., Cumin, R., Schaffner, R. and Haefely, W. (1981). Selective antagonists of benzodiazepines. Nature, Lond., 290, 514

    Article  CAS  Google Scholar 

  • Hunt, P., Husson, J.-M. and Raynaud, J.-P. (1979). A radioreceptor assay for benzodiazepines. J. Pharm. Pharmacol., 31, 448

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa, K., Watabe, S. and Goto, N. (1983). Laminal distribution of γ-aminobutyric acid (GABA) in the occipital cortex of rats: evidence as a neurotransmitter. Brain Res., 277, 361

    Article  PubMed  CAS  Google Scholar 

  • Jaffé, E. H. and Cuello, A. C. (1981). Neuronal and glial release of [3H]-GABA from the rat olfactory bulb. J. Neurochem., 37, 1457

    Article  PubMed  Google Scholar 

  • Karobath, M. and Sperk, G. (1979). Stimulation of benzodiazepine receptor binding by γ-amino-butyric acid. Proc. Natl. Acad. Sci. U.S.A., 76, 1004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kish, S. J., Perry, T. L. and Hornykiewicz, O. (1984). Benzodiazepine receptor binding in cerebellar cortex: observations in olivopontocerebellar atrophy. J. Neurochem., 42, 466

    Article  PubMed  CAS  Google Scholar 

  • Klepner, C. A., Lippa, A. S., Benson, D. I., Sano, M. C. and Beer, B. (1979). Resolution of two biochemically and pharmacologically distinct benzodiazepine receptors. Pharmacol. Biochem. Behav., 11, 475

    Article  Google Scholar 

  • Kuhar, M. J. (1985). Receptor localization with the microscope. In Yamamura, H. I., Emma, S. J. and Kuhar, M. J. (Eds.), Neurotransmitter Receptor Binding, 2nd edn, pp. 153–176. Raven Press, New York

    Google Scholar 

  • Laduron, P. M. (1984). Criteria for receptor sites in binding studies. Biochem. Pharmacol., 33, 833

    Article  PubMed  CAS  Google Scholar 

  • Leeb-Lundberg, L. M. F. and Olsen, R.W. (1983). Heterogeneity of benzodiazepine receptor interactions with γ-aminobutyric acid and barbiturate receptor sites. Molec. Pharmacol., 23, 315

    CAS  Google Scholar 

  • Le Fur, G., Mizoule, J., Burgevin, M. C. Ferris, O., Heaulme, M., Gauthier, A., Gueremy, C. and Uzan A. (1981). Multiple benzodiazepine receptors: evidence of a dissociation between anticonflict and anticonvulsant properties by PK 8165 and PK 9084 (two quinoline derivatives). Life Sci., 28, 1439

    Article  PubMed  Google Scholar 

  • Leonhardt, H. (1980). In Oksche, A. and Vollrath, L. (Eds.), Handbuch der mikroskopischen Anatomie des Menschen. 4. Band: Nervensystem, 10. Teil: Neuroglia I, pp. 177–666. Springer-Verlag, Berlin

    Google Scholar 

  • Lippa, A. S., Beer, B., Sano, M. C., Vogel, R. A. and Meyerson, L. R. (1981). Differential ontogeny of type 1 and type 2 benzodiazepine receptors. Life Sci., 28, 2343

    Article  PubMed  CAS  Google Scholar 

  • Lippa, A. S., Klepner, A., Benson, D. I., Critchett, D. J., Sano, M. C. and Beer, B. (1980). The role of GABA in mediating the anticonvulsant properties of benzodiazepines. Brain Res. Bull., 5 (Suppl. 2), 861

    Article  CAS  Google Scholar 

  • Lippa, A. S., Meyerson, L. R. and Beer, B. (1982). Molecular substrates of anxiety: clues from the heterogeneity of benzodiazepine receptors. Life Sci., 31, 1409

    Article  PubMed  CAS  Google Scholar 

  • Lo, M. M. S., Niehoff, D. L., Kuhar, M. J. and Snyder, S. H. (1983a). Autoradiographic differentiation of multiple benzodiazepine receptors by detergent solubilization and pharmacologie specificity. Neurosci. Lett., 39, 37

    Article  PubMed  CAS  Google Scholar 

  • Lo, M. M. S., Niehoff, D. L., Kuhar, M. J. and Snyder, S. H. (1983b). Differential localization of type I and type II benzodiazepine binding sites in substantia nigra. Nature, Lond., 306, 57

    Article  CAS  Google Scholar 

  • Lo, M. M. S., Triffelletti, R. and Snyder, S. H. (1982). Physical separation and characterization of two central benzodiazepine receptors. In Paul, M.S. M., Tallman, J. and Usdin, E. (Eds.), Pharmacology of Benzodiazepines, pp. 165–173. Macmillan Press, London

    Google Scholar 

  • Lowenstein, P. R. and Cardinali, D. P. (1983). Characterization of flunitrazepam and beta-carboline high affinity binding in bovine pineal gland. Neuroendocrinology, 37, 150

    Article  PubMed  CAS  Google Scholar 

  • Lund, J. (1981). Radioreceptor assay for benzodiazepines in biological fluids using a new drug and stable receptor preparation. Scand. J. Clin. Lab. Invest., 41, 275

    Article  PubMed  CAS  Google Scholar 

  • McCarthy, K. D. and Harden, T. K. (1981). Identification of two benzodiazepine binding sites on cells cultured from rat cerebral cortex. J. Pharmacol. Exp. Ther., 216, 183

    PubMed  CAS  Google Scholar 

  • MacNeil, D. A., D’Amico, J. A., Horst, W. D., O’Brien, R. A. and Spirt, N. (1983). Influences of 2 atypical benzodiazepines, Ro 5–3663 and Ro 5–4864, on GABAergic mechanisms. Soc. Neurosci., 9, 412

    Google Scholar 

  • Mallorga, P., Hamburg, M., Tallman, J. and Gallager, D. (1980). Ontogenic changes in GABA modulation of brain benzodiazepine binding. Neuropharmacology, 19, 405

    Article  PubMed  CAS  Google Scholar 

  • Marangos, P. J., Patel, J., Boulenger, J. P. and Clark-Rosenberg, R. (1982). Characterization of peripheral type benzodiazepine binding sites in brain using [3H]Ro 5–4864. Molec. Pharmacol., 22, 26

    CAS  Google Scholar 

  • Marks, J. (1983). The benzodiazepines for good or evil. Neuropsychobiology, 10, 115

    Article  PubMed  CAS  Google Scholar 

  • Martin, I. L., Brown, C. L. and Doble, A. (1983). Multiple benzodiazepine receptors: structures in the brain or structures in the mind? A critical review. Life Sci., 32, 1925

    Article  PubMed  CAS  Google Scholar 

  • Mathew, E., Laskin, J. D., Zimmerman, E. A., Weinstein, I. B., Hsu, K. C. and Engelhardt, D. L. (1981). Benzodiazepines have high-affinity binding sites and induce melanogenesis in B16/C3 melanoma cells. Proc. Natl Acad. Sci. U.S.A., 78, 3935

    Article  Google Scholar 

  • Mathew, E., Parfitt, A. G., Sugden, D., Engelhardt, D. L., Zimmerman, E. A. and Klein, D. C. (1984). Benzodiazepines: rat pinealocyte binding sites and augmentation of norepinephrine-stimulated N-acetyltransferase activity. J. Pharmacol. Exp. Ther., 228, 434

    Google Scholar 

  • Mazière, M., Prenant, Ch., Sastre, J., Crouzet, M., Comar, D., Hantraye, P., Kaisima, M., Guibert, B. and Naquet, R. (1983). 11C-Ro 15–1788 et 11C-flunitrazepam, deux co-ordinats pour l’étude par tomographie par positrons des sites de liaison des benzodiazépines. C.R. Acad. Sci. Paris, 296 (Sér. III), 871

    Google Scholar 

  • Medina, J. H., Novas, M. L. and De Robertis, E. (1983a). Chronic Ro 15–1788 treatment increases the number of benzodiazepine receptors in rat cerebral cortex and hippocampus. Europ. J. Pharmacol, 90, 125

    Article  CAS  Google Scholar 

  • Medina, J. H., Novas, M. L. and De Robertis, E. (1983b). Changes in benzodiazepine receptors by acute stress: different effect of chronic diazepam or Ro 15–1788 treatment. Europ. J. Pharmacol., 96, 181

    Article  CAS  Google Scholar 

  • Meiners, B. A. and Salama, A. L. (1982). Enhancement of benzodiazepine and GABA binding by the novel anxiolytic, tracazolate. Europ. J. Pharmacol., 78, 315

    Article  CAS  Google Scholar 

  • Meldrum, B. S., Evans, M. C. and Braestrup, C. (1983). Anticonvulsant action in the photosensitive baboon, Papio papio, of a novel β-carboline derivative, ZK 91296. Europ. J. Pharmacol., 91, 255

    Article  CAS  Google Scholar 

  • Mennini, T. and Garattini, S. (1983). In Biggio, G. and Costa, E. (Eds.), Benzodiazepine Recognition Site Ligands: Biochemistry and Pharmacology, pp. 189–199. Raven Press, New York

    Google Scholar 

  • Mestres, P. (1978). Old and new concepts about circumventricular organs; an overview. In Johari, O. and Becker, R. P. (Eds.), Scanning Electron Microscopy, Vol. II, pp. 137–142. SEM Inc. AMF O’Hare, Ill.

    Google Scholar 

  • Minchin, M. C. W. and Nutt, D. J. (1983). Studies on [3H]diazepam and [3H]ethyl-β-carboline carboxylate binding to rat brain in vivo. I. Regional variations in displacement. J. Neurochem., 41, 1507

    Article  PubMed  CAS  Google Scholar 

  • Möhler, H. (1982). Benzodiazepine receptors: differential interaction of benzodiazepine agonists and antagonists after photoaffinity labelling with flunitrazepam. Europ. J. Pharmacol., 80, 435

    Article  Google Scholar 

  • Möhler, H. (1984). In Bowery, N. G. (Ed.), Actions and Interactions of GABA and Benzodiazepines, pp. 155–166. Raven Press, New York

    Google Scholar 

  • Möhler, H., Battersby, M. K. and Richards, J. G. (1980). Benzodiazepine receptor protein identified and visualized in brain tissue by a photoaffinity label. Proc. Natl. Acad. Sci. U.S.A., 77, 1666

    Article  PubMed  PubMed Central  Google Scholar 

  • Möhler, H., Buikard, W. P., Keller, H. H., Richards, J. G. and Haefely, W. (1981b). Benzo-diazepine antagonist Ro 15–1788: binding characteristics and interaction with drug-induced changes in dopamine turnover and cerebellar cGMP levels. J. Neurochem., 37, 714

    Article  PubMed  Google Scholar 

  • Möhler, H. and Okada, T. (1977). Benzodiazepine receptors: demonstration in the central nervous system. Science, N. Y., 198, 849

    Article  Google Scholar 

  • Mönier, H., Okada, T., Heitz, Ph. and Ulrich, J. (1978). Biochemical identification of the site of action of benzodiazepines in human brain by 3H-diazepam binding. Life Sci., 22, 985

    Article  Google Scholar 

  • Möhler, H. and Richards, J. G. (1981). Agonist and antagonist benzodiazepine receptor interaction in vitro. Nature, Lond., 294, 763

    Article  Google Scholar 

  • Möhler, H. and Richards, J. G. (1983a). In Malick, J. B., Enna, S. J. and Yamamura, H. I. (Eds.), Anxiolytics: Neurochemical, Behavioural and Clinical Perspectives, pp. 15–40. Raven Press, New York

    Google Scholar 

  • Möhler, H. and Richards, J. G. (1983b). Autoradiographic visualization and pharmacological characterization of 3H-Ro 5–4864 binding in the CNS. Br. J. Pharmacol., 79 (Suppl.), 280P

    Google Scholar 

  • Möhler, H., Richards, J. G. and Wu, J.-Y. (1981a). Autoradiographic localization of benzodiazepine receptors in immunocytochemically identified γ-aminobutyrergic synapses. Proc. Natl. Acad. Sci. U.S.A., 78, 1935

    Article  PubMed  PubMed Central  Google Scholar 

  • Möhler, H., Schoch, P., Richards, J. G., Häring, P., Takàcs, B. and Stähli, C. (1986). Monoclonal antibodies as probes for studying the structure and location of the G AB A receptor/benzodiazepine receptor/chloride channel complex. In Olsen, R. W. and Ventner, J. C. (Eds.), Benzodiazepine-GABA Receptor and Chloride Channel. Alan R. Liss, New York, in press

    Google Scholar 

  • Möhler, H., Sieghart, W., Richards, J. G. and Hunkeler, W. (1984). Photoaffinity labelling of benzodiazepine receptors with a partial inverse agonist. Europ. J. Pharmacol, 102, 191

    Article  Google Scholar 

  • Moingeon, Ph., Bidart, J. M., Alberici, G. F. and Bohuon, C. (1983). Characterization of a peripheral-type benzodiazepine binding site on human circulating lymphocytes. Europ. J. Pharmacol., 92, 147

    Article  CAS  Google Scholar 

  • Mugnaini, E. and Oertel, W. H. (1985). An atlas of the distribution of GABAergic neurons and terminals in the rat CNS as revealed by GAD immunohistochemistry. In Björklund, A. and Hökfelt, T. (Eds.), Handbook of Chemical Neuroanatomy, Vol. 4: GABA and Neuro-peptides in the CNS, Part 1, pp. 436–595. Elsevier, Amsterdam

    Google Scholar 

  • Myslobodsky, M., Feldon, J. and Lerner, T. (1983). Anticonflict action of sodium valproate, interaction with convulsant benzodiazepine (Ro 5–3663) and imidazodiazepine (Ro 15–1788). Life Sci., 33, 317

    Article  PubMed  CAS  Google Scholar 

  • Niehoff, D. L., Mashal, R. D. and Kuhar, M. J. (1983). Benzodiazepine receptors: Preferential stimulation of type 1 receptors by pentobarbital. Europ. J. Pharmacol., 92, 131

    Article  CAS  Google Scholar 

  • Niehoff, D. L. and Whitehouse, P. J. (1983). Multiple benzodiazepine receptors: Autoradiographic localization in normal human amygdala. Brain Res., 276, 237

    Article  PubMed  CAS  Google Scholar 

  • Nielsen, M. and Braestrup, C. (1980). Ethyl-β-carboline-3-carboxylate shows differential benzodiazepine receptor interaction. Nature, Lond., 286, 606

    Article  CAS  Google Scholar 

  • Nielsen, M., Braestrup, C. and Squires, R. F. (1978). Evidence for a late evolutionary appearance of brain-specific benzodiazepine receptors: an investigation of 18 vertebrate and 5 invertebrate species. Brain Res., 141, 342

    Article  PubMed  CAS  Google Scholar 

  • Niznik, H. B., Kish, S. J. and Burnham, W. M. (1983). Decreased benzodiazepine receptor binding in amygdala-kindled rat brains. Life Sci., 33, 425

    Article  PubMed  CAS  Google Scholar 

  • Nutt, D. J., Cowen, P. J. and Little, H. J. (1981). Unusual interactions of benzodiazepine receptor antagonists. Nature, Lond., 295, 436

    Article  Google Scholar 

  • O’Boyle, C., Lambe, R., Darragh, A., Taffe, W., Brick, I. and Kenny, M. (1983). Ro 15–1788 antagonizes the effects of diazepam in man without affecting its bioavailability. Br. J. Anaesth., 55, 349

    Article  PubMed  Google Scholar 

  • Oertel, W. H., Mugaini, E., Tappaz, M. L., Weise, V. K., Dahl, A.-L, Schmechel, D. E. and Kopin, I. J. (1982). Central GABAergic innervation of neurointermediate pituitary lobe: biochemical and immunocytochemical study in the rat. Proc. Natl. Acad. Sci. U.S.A., 79, 675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Olsen, R. W. (1982). Drug interactions at the GABA receptor-ionophore complex. Ann. Rev. Pharmacol. Toxicol., 22, 245

    Article  CAS  Google Scholar 

  • Owen, F., Poulter, M., Waddington, J. L., Mashal, R. D. and Crow, T. J. (1983). [3H]Ro 5–4864 and [3H ] flunitrazepam binding in kainate-lesioned rat striatum and in temporal cortex of brains from patients with senile dementia of the Alzheimer type. Brain Res., 278, 373

    Article  PubMed  CAS  Google Scholar 

  • Palacios, J. M., Niehoff, D. L. and Kuhar, M. J. (1979). Ontogeny of GABA and benzodia-zepine receptors: effects of Triton X-100 and muscimol. Brain Res., 179, 390

    Article  PubMed  CAS  Google Scholar 

  • Palacios, J. M., Niehoff, D. L. and Kuhar, M. J. (1981). Receptor autoradiography with 3H-sensitive film: potential for computerized densitometry. Neurosci. Lett., 25, 101

    Article  PubMed  CAS  Google Scholar 

  • Palacios, J. M., Young, W. S. III and Kuhar, M. (1980). Autoradiographic localization of γ-aminobutyric acid (GABA) receptors in the rat cerebellum. Proc. Natl. Acad. Sci. U.S.A., 77, 670

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Petrack, B., Czernik, A. J., Cassidy, J. P., Bernard, P. and Yokoyama, N. (1983). In Biggio, G. and Costa, E. (Eds.), Benzodiazepine Recognition Site Ligands: Biochemistry and Pharmacology, pp. 129–137. Raven Press, New York

    Google Scholar 

  • Pieri, L., Polc, P., Bonetti, E. P., Burkard, W. P., Cumin, R., Scherschlicht, R. and Haefely, W. (1983). Some pharmacological effects of Ro 5–4864, a specific ligand of the peripheral type of benzodiazepine binding sites. Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharma-kol., 322, 5377

    Google Scholar 

  • Polc, P., Bonetti, E. P., Schaffner, R. and Haefely, W. (1982). A three-state model of the benzodiazepine receptor explains the interactions between the benzodiazepine antagonist Ro 15–1788, benzodiazepine tranquilizers, β-carbolines and phenobarbitone. Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol., 321, 260

    Article  CAS  Google Scholar 

  • Polc, P., Laurent, J.-P., Scherschlicht, R. and Haefely, W. (1981). Electrophysiological studies on the specific benzodiazepine antagonist Ro 15–1788. Naunyn-Schmiedebergs Arch. Exp. Pathol Pharmakol., 316, 317

    Article  CAS  Google Scholar 

  • Polc, P., Möhler, H. and Haefely, W. (1974). The effect of diazepam on spinal cord activities: possible sites and mechanisms of action. Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol., 284, 319

    Article  CAS  Google Scholar 

  • Polc, P. and Schaffner, R. (1983). Electrophysiological effects of the peripheral-type benzodiazepine receptor ligand Ro 5–4864 in cat spinal cord and rat hippocampus. Presented at 7th European Neuroscience Congress, Hamburg, 12–16 September

    Google Scholar 

  • Prado de Carvalho, L., Venault, P., Cavalheiro, E., Kaijima, M., Valin, A., Dodd, R. H., Potier, P., Rossier, J. and Chapouthier, G. (1983). In Biggio, G. and Costa, E. (Eds.), Benzodiazepine Recognition Site Ligands: Biochemistry and Pharmacology, pp. 175–187. Raven Press, New York

    Google Scholar 

  • Rapold, H. J., Follath, F., Scollo-Lavizzari, G., Kehl, O. and Ritz, R. (1984). Verlängertes Koma durch Sedation mit Diazepam bei beatmeten Patienten. Diagnostische und therapeutische Anwendung des Benzodiazepin-Antagonisten Ro 15–1788. Dtsch. Med. Wschr., 109, 340

    Article  PubMed  CAS  Google Scholar 

  • Regan, J. W., Roeske, W. R. and Yamamura, H. I. (1980). The benzodiazepine receptor: its development and its modulation by γ-aminobutyric acid. J. Pharmacol. Exp. Ther., 212, 137

    PubMed  CAS  Google Scholar 

  • Ribak, C. E., Vaughn, J. E. and Saito, K. (1978). Immunocytochemical localization of glutamic decarboxylase in neuronal somata following colchicine inhibition of axonal transport. Brain Res., 140, 315

    Article  PubMed  CAS  Google Scholar 

  • Ribak, C. E., Vaughn, J. E., Saito, K., Barber, R. and Roberts, E. (1977). Glutamate decarboxylase localization in neurons of the olfactory bulb. Brain Res., 126, 1

    Article  PubMed  CAS  Google Scholar 

  • Ribak, C. E., Vaughn, J. E., Saito, K., Barber, R. and Roberts, E. (1976). Immunocytochemical localization of glutamate decarboxylase in rat substantia nigra. Brain Res., 116, 287

    Article  PubMed  CAS  Google Scholar 

  • Richards, J. G. and Möhler, H. (1984a). Benzodiazepine receptors. Neuropharmacology, 23, 233

    Article  PubMed  CAS  Google Scholar 

  • Richards, J. G. and Möhler, H. (1984b). Recent advances in the visualization and quantification of benzodiazepine receptors. In Agnati, L. F. and Fuxe, K. (Eds.), Quantitative Neuroanatomy in Transmitter Research, pp. 407–415. Macmillan Press, Basingstoke

    Google Scholar 

  • Richards, J. G., Möhler, H. and Haefely, W. (1982). Benzodiazepine binding sites: receptors or acceptors? Trends Pharmacol. Sci., 3, 233

    Article  CAS  Google Scholar 

  • Richards, J. G., Möhler, H. and Haefely, W. (1986a). Mapping benzodiazepine receptors in the CNS by radiohistochemistry and immunohistochemistry. In Panula, P., Päivärintan, H. and Soinila, S. (Eds.), Neurohistochemistry Today, Alan R. Liss, New York, in press

    Google Scholar 

  • Richards, J. G., Mönier, H., Schoch, P., Häring, P., Takács, B. and Stähli, Ch. (1984). The visualization of neuronal benzodiazepine receptors in the brain by autoradiography and immunohistochemistry. J. Receptor Res., 4, 657

    CAS  Google Scholar 

  • Richards, J. G., Möhler, H., Schoch, P., Haring, P., Takács, B. and Stähli, Ch. (1984). The visualization of neuronal benzodiazepine receptors in the brain by autoradiography and immunohistochemistry. J. Receptor Res., 4, 657

    CAS  Google Scholar 

  • Richards, J. G., Schoch, P., Möhler, H. and Haefely, W. (1986b). Benzodiazepine receptors resolved. Experientia, 42, 121

    Article  PubMed  CAS  Google Scholar 

  • Roberts, E. (1978). In Garattini, S., Pujol, J. F. and Samanin, R. (Eds.), Interactions between Putative Neurotransmitters in the Brain, pp. 89–107. Raven Press, New York

    Google Scholar 

  • Roeske, W. R. and Yamamura, H. I. (1982). Identification and characterization of a novel benzodiazepine binding site in heart, skeletal muscle and ileal muscle using the ligand [3H] Ro 5–4864. Clin. Res., 30, 18A

    Google Scholar 

  • Ruffolo, R. R. (1982). Important concepts of receptor theory. J. Auton. Pharmacol., 2, 277

    Article  PubMed  CAS  Google Scholar 

  • Schlumpf, M., Richards, J. G., Lichtensteiger, W. and Möhler, H. (1983). An autoradio-graphic study of the prenatal development of benzodiazepine binding sites in rat brain. J. Neurosci., 3, 1478

    PubMed  CAS  Google Scholar 

  • Schmidt, R. F., Vogel, M. E. and Zimmerman, M. (1967). Die Wirkung von Diazepam auf die präsynaptische Hemmung und andere Rückenmarksreflexe. Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol., 258, 69

    Article  PubMed  CAS  Google Scholar 

  • Schoch, P., Haring, P., Takács, B., Stähli, C. and Möhler, H. (1984). A GABA/benzodiazepine receptor complex from bovine brain: purification, reconstitution and immunological characterization. J. Receptor Res., 4, 189

    CAS  Google Scholar 

  • Schoch, P., and Möhler, H. (1983). Purified benzodiazepine receptor retains modulation by GABA. Europ. J. Pharmacol., 95, 323

    Article  CAS  Google Scholar 

  • Schoch, P., Richards, J. G., Häring, P., Takács, B., Stähli, C., Staehelin, T., Haefely, W. and Möhler, H. (1985). Co-localization of GABAA receptors and benzodiazepine receptors in the brain shown by monoclonal antibodies. Nature, Lond., 314, 168

    Article  CAS  Google Scholar 

  • Schoemaker, H., Boles, R. G., Horst, W. D. and Yamamura, H.I. (1983). Specific high affinity binding sites for [3H]Ro 5–4864 in rat brain and kidney. J. Pharmacol. Exp. Ther., 225, 61

    PubMed  CAS  Google Scholar 

  • Schoemaker, H., Morelli, M., Desmukh, P. and Yamamura, H. L. (1982). [3H] Ro 54864 benzodiazepine binding in the kainate lesioned striatum and Huntington’s diseased basal ganglia. Brain Res., 248, 396

    Article  PubMed  CAS  Google Scholar 

  • Scollo-Lavizzari, G. (1983). First clinical investigation of the benzodiazepine antagonist Ro 15–1788 in comatose patients. Europ. Neurol, 22, 7

    Article  PubMed  CAS  Google Scholar 

  • Sher, P. K. (1983). Reduced benzodiazepine receptor binding in cerebral cortical cultures chronically exposed to diazepam. Epilepsia, 24, 313

    Article  PubMed  CAS  Google Scholar 

  • Sher, P. K., Study, R. E., Mazzetta, J., Barker, J. L. and Nelson, P. G. (1983). Depression of benzodiazepine binding and diazepam potentiation of GABA-mediated inhibition after chronic exposure of spinal cord cultures to diazepam. Brain Res., 268, 171

    Article  PubMed  CAS  Google Scholar 

  • Sieghart, W. (1983). Several new benzodiazepines selectively interact with a benzodiazepine receptor subtype. Neurosci. Lett., 38, 73

    Article  PubMed  CAS  Google Scholar 

  • Sieghart, W. and Drexler, G. (1983). Irreversible binding of [3H]flunitrazepam to different proteins in various brain regions. J. Neurochem., 41, 47

    Article  PubMed  CAS  Google Scholar 

  • Sieghart, W. and Karobath, M. (1980). Molecular heterogeneity of benzodiazepine receptors. Nature, Lond., 286, 285

    Article  CAS  Google Scholar 

  • Sieghart, W. and Mayer, A. (1982). Postnatal development of proteins irreversibly labelled by 3H-flunitrazepam. Neurosci Lett., 31, 71

    Article  PubMed  CAS  Google Scholar 

  • Sigel, E., Stephenson, F. A., Mamalki, C. and Barnard, E. A. (1983). A γ-amino-butyric acid/benzodiazepine receptor complex of bovine cerebral cortex: purification and partial characterization. J. Biol Chem., 258, 6965

    PubMed  CAS  Google Scholar 

  • Sigel, E, Stephenson, F. A., Mamalaki, C. and Barnard, E. A. (1984). The purified GABA/benzodiazepine/barbiturate receptor complex: four types of ligand-binding sites, and the interactions between them, are preserved in a single isolated protein complex. J. Receptor Res., 4, 175

    CAS  Google Scholar 

  • Simmonds, R. D., Kellogg, C. K. and Miller, R. K. (1984). Prenatal diazepam exposure in rats long-lasting, receptor-mediated effects on hypothalamic norepinephrine-containing neurons. Brain Res., 293, 73

    Article  Google Scholar 

  • Skerritt, J. H. and Johnston, G. A. R. (1983). Enhancement of GABA binding by benzodi-azepines and related anxiolytics. Europ. J. Pharmacol., 89, 193

    Article  CAS  Google Scholar 

  • Skolnick, P., Lock, K.-L., Paugh, B., Marangos, P., Windsor, R. and Paul, S. (1980). Pharmacologic and behavioral effects of EMD 28422: a novel purine which enhances (3H) diazepam binding to brain benzodiazepine receptors. Pharmacol. Biochem. Behav., 12, 685

    Article  PubMed  CAS  Google Scholar 

  • Skolnick, P., Paul, S., Crawley, J., Lewin, E., Lippa, A., Clody, D., Irmscher, K., Saiko, O. and Minck, K.-O. (1983). Antagonism of the anxiolytic action of diazepam and chlor-diazepoxide by the novel imidazopyridines, EMD 39593 and EMD 41717. Europ. J. Pharmacol., 88, 319

    Article  CAS  Google Scholar 

  • Snyder, H. S. (1984). Drug and neurotransmitter receptors in the brain. Science, N. Y., 224, 22

    Article  CAS  Google Scholar 

  • Squires, F. R. (1983). Benzodiazepine receptor multiplicity. Neuropharmacology, 22, 1443

    Article  PubMed  CAS  Google Scholar 

  • Squires, R. F., Benson, D. I., Braestrup, C., Coupet, J., Kiepner, C. A., Myers, V. and Beer, B. (1979). Some properties of brain specific benzodiazepine receptors: new evidence for multiple receptors. Pharmacol. Biochem. Behav., 10, 825

    Article  PubMed  CAS  Google Scholar 

  • Squires, R. F. and Braestrup, C. (1977). Benzodiazepine receptors in rat brain. Nature, Lond., 266, 732

    Article  CAS  Google Scholar 

  • Squires, R. F., Casida, J. E., Richardson, M. and Saederup, E. (1983). 35S-t-Butylbicyclo-phosphothionate binds with high affinity to brain specific sites coupled to GABAA and ion recognition sites. Molec. Pharmacol., 23, 326

    CAS  Google Scholar 

  • Stephens, D. N., Kehr, W., Schneider, H. H. and Schmiechen, R. (1984). β-Carbolines with agonistic and inverse agonistic properties at benzodiazepine receptors of the rat. Neurosci. Lett., 47, 333

    Article  PubMed  CAS  Google Scholar 

  • Sternberger, L. A. (1979). Immunocytochemistry, 2nd edn. Wiley, New York

    Google Scholar 

  • Strittmatter, W. J., Hirata, F., Axelrod, J., Mallorga, P., Tallman, J. F. and Henneberry, R. C. (1979). Benzodiazepine and β-adrenergic receptor ligands independently stimulate phospholipid methylation. Nature, Lond., 2812, 857

    Article  Google Scholar 

  • Study, R. E. and Barker, J. L. (1982). Cellular mechanisms of benzodiazepine action. J. Am. Med. Ass., 247, 2147

    Article  CAS  Google Scholar 

  • Supavilai, P. and Karobath, M. (1981). Action of pyrazolopyridines as modulators of [3H ]flunitrazepam binding to the GABA/benzodiazepine receptor complex of the cerebellum. Europ. J. Pharmacol., 70, 183

    Article  CAS  Google Scholar 

  • Supavilai, P. and Karobath, M. (1983). Differential modulation of [35S]TBPS binding by the occupancy of benzodiazepine receptors with its ligands. Europ. J. Pharmacol., 91, 145

    Article  CAS  Google Scholar 

  • Syapin, P. J. and Skolnick, P. (1979). Characterization of benzodiazepine binding sites in cultured cells of neural origin. J. Neurochem., 32, 1047

    Article  PubMed  CAS  Google Scholar 

  • Tallman, J. F., Thomas, J. W. and Gallager, D. W. (1978). GABAergic modulation of benzodiazepine binding site sensitivity. Nature, Lond., 274, 384

    Article  Google Scholar 

  • Taniguchi, T., Wang, J. K. T. and Spector, S. (1980). Properties of [3H]-diazepam binding to rat peritoneal mast cells. Life Sci., 27, 171

    Article  PubMed  CAS  Google Scholar 

  • Thomas, J. W. and Tallman, J. F. (1981). Characterization of photoaffinity labeling of benzodiazepine binding. J Biol. Chem., 256, 9838

    PubMed  CAS  Google Scholar 

  • Thomas, J. W. and Tallman, J. F. (1983). Photoaffinity labeling of benzodiazepine receptors causes altered agonist-antagonist interactions. J. Neurosci., 3, 433

    PubMed  CAS  Google Scholar 

  • Ticku, M. K. (1983). Benzodiazepine-GABA receptor-ionophore complex. Current concepts. Neuropharmacology, 22, 1459

    Article  PubMed  CAS  Google Scholar 

  • Ticku, M. K. and Ramanjaneyulu, R. (1984). Ro 5–4864 inhibits the binding of [35S]-t-butylbicyclophosphorothionate to rat brain membranes. Life Sci., 34, 631

    Article  PubMed  CAS  Google Scholar 

  • Unnerstall, J. R., Kuhar, M. J., Niehoff, D. L. and Palacios, J. M. (1981). Benzodiazepine receptors are coupled to a subpopulation of γ-aminobutyric acid (GABA) receptors: evidence from a quantitative autoradiographic study. J. Pharmacol. Exp. Ther., 218, 797

    PubMed  CAS  Google Scholar 

  • Unnerstall, J. R., Niehoff, D. L., Kuhar, M. J. and Palacios, J. M. (1982). Quantitative receptor autoradiography using [3H]ultrofilm: application to multiple benzodiazepine receptors. J. Neurosci Meth., 6, 59

    Article  CAS  Google Scholar 

  • Villiger, J.W. (1984). Specific [3H]Ro 5–4864 binding to rat spinal cord membranes: evidence for peripheral type benzodiazepine recognition sites. Neurosci. Lett., 46, 267

    Article  PubMed  CAS  Google Scholar 

  • Wamsley, J. K., Gee, K. W. and Yamamura, H. I. (1983). Comparison of the distribution of convulsant/barbiturate and benzodiazepine receptors using light microscopic auto-radiography. Life Sci., 33, 2321

    Article  PubMed  CAS  Google Scholar 

  • Wamsley, J. K. and Palacios, J. M. (1982). In Lajtha, A. (Ed.), Handbook of Neurochemistry, 2nd edn, Vol. 2, pp. 27–51, Plenum Press, New York

    Google Scholar 

  • Wang, J. K. T., Taniguchi, T. and Spector, S. (1980). Properties of [3H]-diazepam binding to rat blood platelets. Life Sci., 27, 1881

    Article  PubMed  CAS  Google Scholar 

  • Wang, J. K. T., Taniguchi, T. and Spector, S. (1984). Structural requirements for the binding of benzodiazepines to their peripheral-type sites. Molec. Pharmacol., 25, 349

    CAS  Google Scholar 

  • Waszczak, B. L. (1983). Diazepam potentiates GABA-, but not adenosine-mediated inhibition of neurons of the nigral pars reticulata. Neuropharmacology, 22, 953

    Article  PubMed  CAS  Google Scholar 

  • Weissman, B. A., Cott, J., Hommer, D., Paul, S. and Skolnick, P. (1984a). Electrophysio-logical and pharmacological actions of the convulsant benzodiazepine Ro 54864. Europ. J. Pharmacol., 97, 257

    Article  CAS  Google Scholar 

  • Weissman, B. A., Cott, J., Hommer, D., Quirion, R., Paul, S. and Skolnick, P. (1983). In Biggio, G. and Costa, E. (Eds.), Benzodiazepine Recognition Site Ligands: Biochemistry and Pharmacology, pp. 139–151. Raven Press, New York

    Google Scholar 

  • Weissman, B. A., Cott, J., Jackson, J. A., Bolger, G. T., Weber, K. H., Horst, W. D., Paul, S. M. and Skolnick, P. (1984b). ‘Peripheral-type’ binding sites for benzodiazepines in brain: relationship to the convulsant actions of Ro 5–4864. J. Neurochem., 44, 1494

    Article  Google Scholar 

  • Williams, M. and Risley, E. A. (1979). Enhancement of the binding of 3H-diazepam to rat brain membranes in vitro by SQ 20009, a novel anxiolytic, γ-aminobutyric acid (GABA) and muscimol. Life Sci., 24, 833

    Article  PubMed  CAS  Google Scholar 

  • Williamson, M. J., Paul, S. M. and Skolnick, P. (1978). Demonstration of [3H]diazepam binding to benzodiazepine receptors in vivo. Life Sci., 23, 1935

    Article  PubMed  CAS  Google Scholar 

  • Wong, D. T., Threlkeld, P. G., Bymaster, F. P. and Squires, R. F. (1984). Saturable binding of 35S-t-butylbicyclophosphorothionate to the sites linked to the GABA receptor and the interaction with GABAergic agents. Life Sci., 34, 853

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama, N., Ritter, B. and Neubert, A. D. (1982). 2-Arylpyrazolo (4,3-c) quinolin-3-ones: novel agonists, partial agonists and antagonists of benzodiazepines. J. Med. Chem., 25, 337

    Article  PubMed  CAS  Google Scholar 

  • Young, W. S. and Kuhar, M. J. (1979). A new method for receptor autoradiography: [3H] opioid receptors in rat brain. Brain Res., 179, 255

    Article  PubMed  CAS  Google Scholar 

  • Young, W. S. and Kuhar, M. J. (1980). Radiohistochemical localization of benzodiazepine receptors in rat brain. J. Pharmacol. Exp. Ther., 212, 337

    PubMed  CAS  Google Scholar 

  • Young, W. S., Niehoff, D., Kuhar, M. J., Beer, B. and Lippa, A. S. (1981). Multiple benzodiazepine receptor localization by light microscopic radiohistochemistry. J. Pharmacol. Exp. Ther., 216, 425

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 1986 The Editor and the Contributors

About this chapter

Cite this chapter

Richards, G., Möhler, H., Haefely, W. (1986). Benzodiazepine Receptors and their Ligands. In: Woodruff, G.N. (eds) Mechanisms of Drug Action. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-08026-7_4

Download citation

Publish with us

Policies and ethics