Skip to main content

Ganglion Blockers

  • Chapter
Mechanisms of Drug Action

Abstract

The term ‘ganglion blocking agents’ is commonly used for the chemical compounds that block synaptic transmission through the autonomic ganglia selectively — i.e. at doses lower than those needed to block transmission through other synapses. Briefly, the transmission is a sequence of processes that starts with the release of synaptic transmitter, acetylcholine (ACh), from the terminals of preganglionic fibres. The released ACh interacts with nicotinic acetylcholine receptors, the protein molecules incorporated into the postsynaptic membrane of the ganglion neurons. It is thought that each acetylcholine receptor consists of two functionally different parts: the recognition component that binds ACh, and the ion channel. The interaction of ACh with recognition component is followed by a transient opening of the ion channel. The excitatory postsynaptic current (EPSC) which flows through many ACh receptor channels produces across the excitable membrane of the neuron the excitatory postsynaptic potential (EPSP) that triggers postsynaptic spike.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, D. J., Nonner, W., Dwyer, T. M. and Hille, B. (1981). Block of end-plate channels by permeant cations in frog skeletal muscle. J. Gen. Physiol., 78, 593

    Article  PubMed  CAS  Google Scholar 

  • Adams, P. R. (1976). Drug blockade of open end-plate channels. J. Physiol., Lond., 260, 531

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Adams, P. R. (1977). Voltage jump analysis of procaine action at frog end-plate. J. Physiol., Lond., 268, 291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Adams, P. R. and Sakmann, B. (1978). Decamethonium both opens and blocks end-plate channels. Proc. Natl. Acad. Sci. U.S.A., 75, 2994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Adler M., Oliveira, A. C., Albuquerque, E. X., Mansour, N. A. and Eldefrawi, A. T. (1979). Reaction of tetraethylammonium with the open and closed conformations of the acetylcholine receptor ionic channel complex. J. Gen. Physiol., 74, 129

    Article  PubMed  CAS  Google Scholar 

  • Ascher, P., Large, W. A. and Rang, H. P. (1979). Studies on the mechanism of action of acetylcholine antagonists on rat parasympathetic ganglion cells. J. Physiol., Lond., 295, 139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ascher, P., Marty A. and Neild, T. O. (1978). The mode of action of antagonists of the excitatory response to acetylcholine in Aplysia neurones. J. Physiol., Lond., 278, 207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Auerbach, A., Del Castillo, J., Specht, P. C. and Titmus, M. (1983). Correlation of agonist structure with acetylcholine receptor kinetics: studies on the frog end-plate and on chick embryo muscle. J. Physiol., Lond., 343, 551

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barlow, R. B. and Zoller, A. (1964). Some effects of long chain polymethylene bis-onium salts on junctional transmission in the peripheral nervous system. Br. J. Pharmacol., 23, 131

    CAS  Google Scholar 

  • Barnard, E. A., Wieckowski, J. and Chiu, T. H. (1971). Cholinergic receptor molecules and cholinesterase molecules at mouse skeletal muscle junctions. Nature, Lond., 234, 207

    Article  CAS  Google Scholar 

  • Bowman, W. C. and Webb, S. N. (1972). Neuromuscular blocking and ganglion blocking activities of some acetylcholine antagonists in the cat. J. Pharm. Pharmacol., 24, 762

    Article  PubMed  CAS  Google Scholar 

  • Brown, D. A. (1980). Locus and mechanism of action of ganglion-blocking agents. In Kharkevich, D. A. (Ed.), Pharmacology of Ganglionic Transmission, pp. 185–236. Springer-Verlag, Berlin, Heidelberg, New York

    Chapter  Google Scholar 

  • Brown, D. A., Garthwaite, J., Hayashi E. and Yamada, S. (1977). Action of surugatoxin on nicotinic receptors in the superior cervical ganglion of the rat. Br. J. Pharmacol., 58, 157

    Article  Google Scholar 

  • Bursztain, Ch. and Gerschon, M. (1977). Discrimination between nicotinic receptors in vertebrate ganglia and skeletal muscle by α-bungarotoxin and cobra venoms. J. Physiol., Lond., 269, 17

    Article  Google Scholar 

  • Carbonetto, S. T., Fambrough, D. M. and Muller, K. J. (1978). Nonequivalence of α-bungaro-toxin receptors and acetylcholine receptors in chick sympathetic neurons. Proc. Natl. Acad. Sci. U.S.A., 75, 1018

    Article  Google Scholar 

  • Case, R., Creese, R., Dixon, W. J., Massey, F. J. and Taylor, D. B. (1977). Movement of labelled decamethonium in muscle fibres of the rat. J. Physiol., Lond., 171, 183

    Google Scholar 

  • Chang, H. W. and Neumann, E. (1976). Dynamic properties of isola ted acetylcholine receptor proteins: release of calcium ions caused by acetylcholine binding. Proc. Natl. Acad. Sci. U.S.A., 73, 3364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Changeux, J.-P., Bon, F., Cartand, J., Devillers-Thiery, A., Giraudat, J., Heidmann, T., Holton, B., Nghiém, H.-O., Popot, J.-L., Van Rapenbusch, R. and Tzartos, S. (1983). Allosteric properties of the acetylcholine receptor protein from Torpedo marmorata. Cold Spring Harb. Symp. Quant. Biol., 48, 35

    Article  PubMed  CAS  Google Scholar 

  • Chiappinelly, V. A., Cohen, J. B. and Zigmond, R. E. (1981). The effects of α- and β-neuro-toxins from the venoms of various snakes on transmission in autonomie ganglia. Brain Res., 211, 107

    Article  Google Scholar 

  • Colquhoun, D., Dreyer, F. and Sheridan, R. E. (1979). The actions of tubocurarine at the neuromuscular junction. J. Physiol., Lond., 293, 247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Colquhoun, D. and Sheridan, R. E. (1982). The effect of tubocurarine competition on the kinetics of agonist action on the nicotinic receptor. Br. J. Pharmacol., 75, 77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Connor, E. A., Levy, S. M. and Parsons, R. L. (1983). Kinetic analysis of atropine-induced alterations in bullfrog ganglionic fast synaptic currents. J. Physiol., Lond., 337, 137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Creese, R., Franklin, G. I. and Mitchell, L. D. (1977). Sodium entry in rat diaphragm induced by depolarising drugs. J. Physiol., Lond., 272, 295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Del Castillo, J. and Katz, B. (1957). Interaction at end-plate receptors between different choline derivatives. Proc. Roy. Soc. Lond. (Biol.), 146, 369

    Article  Google Scholar 

  • Derkach, V. A., Selyanko, A. A. and Skok, V. I. (1983). Acetylcholine-induced current fluctuations and fast excitatory post-synaptic currents in rabbit sympathetic neurones. J. Physiol., Lond., 336, 511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Devillers-Thiery, A., Giraudat, J., Bentaboulet, M. and Changeux, J. P. (1983). Complete mRNA coding sequence of the ACh binding α subunit from T. marmorata AChR. A model for the transmembrane organization of the polypeptide chain. Proc. Natl. Acad. Sci. U.S.A., 80, 2067

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dreyer, F., Walther, Chr. and Peper, K. (1976). Junctional and extrajunctional acetylcholine receptors in normal and denervated frog muscle fibres. Pflügers Arch. Ges. Physiol., 366, 1

    Article  CAS  Google Scholar 

  • Dun, N. J. and Karczmar, A. C. (1980). Blockade of ACh potentials by α-bungarotoxin in rat superior cervical ganglion cells. Brain Res., 196, 536

    Article  PubMed  CAS  Google Scholar 

  • Dyadyusha, G. G., Kornilov, M. Ju., Zamkovoy, V. I., Dekhtyar, M. L. and Skok, V. I. (1985). Conformational analysis of bis-quaternary ammonium compounds which selectively block acetylcholine receptor. Rep. Ukr. SSR Acad. Sci.

    Google Scholar 

  • Eldefrawi, M. E., Eldefrawi, A. T. and O’Brien, R. D. (1971). Binding sites for cholinergic ligands in a particulate fraction of Electrophorus electroplax. Proc. Natl. Acad. Sci. U.S.A., 68, 1047

    Article  PubMed  CAS  Google Scholar 

  • Eldefrawi, M. E., Eldefrawi, A. T., Penfield, L. A., O’Brien, R. D. and Van Campen, D. (1975). Binding of calcium and zinc to the acetylcholine receptor purified from Torpedo californica. Life Sci., 16, 925

    Article  CAS  Google Scholar 

  • Fairclough, R. H., Finer-Moore, J., Love, R. A., Kristofferson, D., Desmeules, P. J. and Stroud, R. M. (1983). Subunit organization and structure of an acetylcholine receptor. Cold Spring Harb. Symp. Quant. Biol, 48, 9

    Article  PubMed  CAS  Google Scholar 

  • Feltz, A. and Trautmann, A. (1982). Desensitization at the frog neuromuscular junction: a biphasic process. J. Physiol., Lond., 322, 257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fiekers, J. E., Spannbaner, P.M., Scubon-Mulieri, B. and Parsons, R. L. (1980). Voltage dependence of desensitization. Influence of calcium and activation kinetics. J. Gen. Physiol., 75, 511

    Article  PubMed  CAS  Google Scholar 

  • Gill, E. W. (1959). In terquaternary distance and ganglion-blocking activity in bis-quaternary compounds. Proc. Roy. Soc. Lond., B, 150, 381

    Article  CAS  Google Scholar 

  • Guyton, A. C. and Reeder, R. C. (1950). Quantitative studies on the autonomie actions of curare. J. Pharmacol. Exp. Ther., 98, 188

    PubMed  CAS  Google Scholar 

  • Gyermek, L. (1980). Methods for the examination of ganglion-blocking activity. In Kharkevich, D. A. (Ed.), Pharmacology of Ganglionic Transmission, pp. 63–122. Springer-Verlag, Berlin, Heidelberg, New York

    Chapter  Google Scholar 

  • Haefely, W. (1974a). The effects of 1,1-dimethyl-4-phenyl-piperazinium (DMPP) in cat superior cervical ganglion in situ. Naunyn-Schmiedebergs Arch. Exp. Pathol Pharmakol., 281, 57

    Article  CAS  Google Scholar 

  • Haefely, W. (1974b). The effects of various ‘nicotine-like’ agents in the cat superior cervical ganglion in situ. Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol., 281, 93

    Article  CAS  Google Scholar 

  • Hayashi, E. and Yamada, S. (1975). Pharmacological studies on surugatoxin, the toxic principle from Japanese Ivory mollusc (Babylonia japonica). Br. J. Pharmacol, 53, 207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karlin, A., Cox, R., Kaldany, R.-R., Lobel, P. and Holtzman, E. (1983). The arrangement and functions of the chains of the acetylcholine receptor of Torpedo electric tissue. Cold Spring Harb. Symp. Quant. Biol., 48, 1

    Article  PubMed  CAS  Google Scholar 

  • Kato, E., Kuba, K. and Koketsu, K. (1980). Effects of erabutoxins on the cholinergic receptors of bullfrog sympathetic ganglion cells. Brain Res., 191, 294

    Article  PubMed  CAS  Google Scholar 

  • Kharkevich, D. A., (1967). Ganglion-blocking and Ganglion-stimulating Agents. Pergamon Press, Oxford

    Google Scholar 

  • Kistler, J., Stroud, R. M., Klymkowsky, M. W., Lanacette, R. A. and Fairclough, R. H. (1982). Structure and function of an acetylcholine receptor. Biophys. J., 37, 311

    Google Scholar 

  • Kosower, E. M. (1983). A molecular model for the exobilayer portion of the α-subunit of the acetylcholine receptor with binding sites for acetylcholine and non competitive antagonists. Biochem. Biophys. Research Commun., 116, 17

    Article  CAS  Google Scholar 

  • Kretsinger, R. H. (1976). Calcium in biological systems. Coord. Chem. Rev., 18, 29

    Article  CAS  Google Scholar 

  • Kuba, K. and Takeshita, S. (1983). On the mechanism of calcium action on the acetylcholine receptor-channel complex at the frog end-plate membrane. Jap. J. Physiol., 33, 931

    Article  CAS  Google Scholar 

  • Lingle, C. (1983a). Blockade of cholinergic channels by chlorisondamine on a crustacean muscle. J. Physiol., Lond., 339, 395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lingle, C. (1983b). Different types of blockade of crustacean acetylcholine-induced currents. J. Physiol., Lond., 339, 419

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Llados, F., Matteson, D. R. and Kriebel, M. E. (1980). β-Bungarotoxin preferentially blocks one class of miniature end-plate potentials. Brain Res., 192, 598

    Article  PubMed  CAS  Google Scholar 

  • Lukomskaya, N. Ya. and Gmiro, V. E. (1982). Study of cholinoreceptive membrane in sympathetic ganglion by analysis of structure-activity relationship. J. Autonom. Nerv. Syst., 6, 363

    Article  CAS  Google Scholar 

  • Luzzatto, A. C., Tronconi, B. C., Paggi, P. and Rossi, A. (1980). Binding of Naja naja siamensis α-toxin to the chick ciliary ganglion: a light-microscopy autoradiographic study. Neuroscience, 5, 310

    Google Scholar 

  • Magazanik, L. G., Ivanov, A. Ya. and Lukomskaya, N. Ya. (1974). Action of snake venom polypeptides on cholinergic receptors of the isolated rabbit sympathetic ganglion. Neurophysiology, 6(6), 518

    Google Scholar 

  • Magazanik, L. H., Antonov, S. M. and Gmiro, V. E. (1984). Kinetics and pharmacological blockade of glutamate-activated postsynaptic ion channels. Biol. Memb., 1, 130

    CAS  Google Scholar 

  • Magleby, K. L. and Pallotta B. S. (1983). Burst kinetics of a single calcium-activated potassium channel in cultured rat muscle. J. Physiol., 344, 605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Magleby, K. L. and Stevens, C. F. (1972). A quantitative description of end-plate currents. J. Physiol., 223, 173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marty, A. (1980). Action of calcium ions on acetylcholine-sensitive channels in Aplysia neurones. J. Physiol., Paris, 76, 523

    CAS  Google Scholar 

  • Michelson, M. Ya. and Zeimal, E. V. (1973). Acetylcholine: An Approach to the Molecular Mechanism of Action. Pergamon Press, Oxford

    Google Scholar 

  • Mishina, M., Kurosaki, T., Tobimatsu, T., Morimoto, Y., Noda, M., Yamamoto, T., Terao, M., Lindstrom, J., Takahashi, T., Kuno, M. and Numa, Sh. (1984). Expression of functional acetylcholine receptor from cloned cDNAs. Nature, Lond., 307, 604

    Article  CAS  Google Scholar 

  • Miller, Ch. (1982). Bis-quaternary ammonium blockers as structural probes of the sarco-plasmic reticulum K+ channel. J. Gen. Physiol., 79, 896

    Article  Google Scholar 

  • Milne, R. J. and Birnie, J. H. (1981). Effects of hexamethonium and decamethonium on end-plate current parameters. Molec. Pharmacol., 19, 276

    CAS  Google Scholar 

  • Neher, E. and Steinbach, J. H. (1978). Local anaesthetics transiently block currents through single acetylcholine-receptor channels. J. Physiol., Lond., 277, 153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Noda, M., Furutani, Y., Takahashi, H., Toyosato, M., Tanabe, T., Shimizu, S., Kikyotani, S., Kayano, T., Hirose, T., Inayama, S. and Numa, S (1983a). Cloning and sequence analysis of calf cDNA and human genomic DNA encoding α-subunit precursor of muscle acetylcholine receptor. Nature, Lond., 305, 818

    Article  CAS  Google Scholar 

  • Noda, M., Takahashi, H., Tanabe, Ts., Toyosato, M., Kikyotani, S., Furutani, Y., Hirose, T., Takashima, H., Inayama, S., Miyata, T. and Numa, Sh. (1983b). Structural homology of Torpedo californica acetylcholine receptor subunits. Nature, Lond., 302, 528

    Article  CAS  Google Scholar 

  • Paton, W. D. M. and Zaimis, E. J. (1949). The pharmacological actions of polymethylene bistrimethylammonium salts. Br. J. Pharmacol., 4, 381

    CAS  Google Scholar 

  • Ptitsyn, O. B. and Finkelstein, A. V. (1983). Theory of protein secondary structure and algorithm of its prediction. Biopolymers, 22, 15

    Article  PubMed  CAS  Google Scholar 

  • Quik, M., Smith, P. A., Padjen, A. L. and Collier, B. (1981). A critical evaluation of the use of toxins from Dendroaspis viridis to block nicotinic responses at central and ganglionic synapses. Brain Res., 209, 129

    Article  PubMed  CAS  Google Scholar 

  • Raftery, M., Dunn, S. M. J., Conti-Tronconi, B. M., Middlemas, D. S. and Crawford, R. D. (1983). The nicotinic acetylcholine receptor: subunit structure, functional binding sites, and ion transport properties. Cold Spring Harb. Symp. Quant. Biol., 48, 21

    Article  PubMed  CAS  Google Scholar 

  • Rang, H. P. (1981). The characteristics of synaptic currents and responses to acetylcholine of rat submandibular ganglion cells. J. Physiol., Lond., 311, 23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rang, H. P. (1982). The action of ganglionic blocking drugs on the synaptic responses of rat submandibular ganglion cells. Br. J. Pharmacol., 75, 151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rang, H. P. and Gurney, A. M. (1982). Components of the synaptic current of rat submandibular ganglion cells. J. Physiol., Paris, 78, 426

    CAS  Google Scholar 

  • Rang, H. P. and Rylett, R. J. (1984). The interaction between hexamethonium and tubo-curarine on the rat neuromuscular junction. Br. J. Pharmacol., 81, 519

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rozenhart, E. V. and Jorov, B. S. (1983). A distance between the ammonium groups of polymethylene-bis-trimethylammonium compounds estimated from theoretical con-formational analysis. Rep. USSR Acad. Sci., 273, 505

    Google Scholar 

  • Sakmann, B., Patlak, J. and Neher, E. (1980). Single acetylcholine-activated channels show burst-kinetics in presence of desensitizing concentrations of agonist. Nature, Lond., 286, 71

    Article  CAS  Google Scholar 

  • Selyanko, A. A. (1983). Mechanism of action of snake venom α-neurotoxins on nicotinic acetylcholine receptors of rabbit sympathetic ganglion neurons. Neurophysiology, 15(4), 275

    Article  Google Scholar 

  • Selyanko, A.A., Derkach, V. A. and Skok, V. I. (1979). Fast excitatory postsynaptic currents in voltage-clamped mammalian sympathetic ganglion neurons. J. Autonom. Nerv. Syst., 1, 127

    Article  CAS  Google Scholar 

  • Selyanko, A. A., Derkach, V. A. and Skok, V. I. (1986). Effects of some ganglion-blocking agents on fast excitatory postsynaptic currents in mammalian sympathetic ganglion neurons. In Salanki J. (Ed.)., Physiology of Excitable Membranes, in press

    Google Scholar 

  • Selyanko, A. A., Derkach, V. A. and Skok, V. I. (1982). Voltage-dependent actions of short-chain polymethylene bis-trimethylammonium compounds on sympathetic ganglion neurons. J. Autonom. Nerv. Syst., 6, 13

    Article  CAS  Google Scholar 

  • Selyanko, A. A., Derkach, V. A. and Skok, V. I. (1985). Effect of calcium ions on the hexamethonium-induced open channel blockade in the acetylcholine receptor. (In press)

    Google Scholar 

  • Shultz, G. E. and Schirmer, R. M. (1979). Principles of Protein Structure. Springer-Verlag, New York, Heidelberg, Berlin

    Google Scholar 

  • Skok, V. I. (1973). Physiology of Autonomic Ganglia. Igaku Shoin, Tokyo

    Google Scholar 

  • Skok, V. I. (1983). Structure of binding site for bis-ammonium blockers of synaptic transmission in nicotinic acetylcholine receptor. Rep. USSR Acad. Sci., 273, 246

    CAS  Google Scholar 

  • Skok, V. I. (1985). Localization and structure of the sites in the nicotinic acetylcholine receptor that bind bis-quaternary ammonium compounds. Biol. Memb., 2, 245

    CAS  Google Scholar 

  • Skok, V. I., Selyanko, A. A. and Derkach, V. A. (1983). Channel-blocking activity is a possible mechanism for a selective ganglionic blockade. Pflügers Arch. Ges. Physiol., 398, 169

    Article  CAS  Google Scholar 

  • Skok, V. I., Selyanko, A. A., Derkach, V. A., Gmiro, V. E. and Lukomskaya, N. Ya. (1984). The mechanisms of ganglion-blocking action of bis-ammonium compounds. Neurofizio-logia, 16, 54

    CAS  Google Scholar 

  • Steinbach, A. B. (1968). A kinetic model for the action of xylocaine on receptors for acetyl-choline. J. Gen. Physiol., 52, 162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Syapin, P. J., Salvaterra, P. M. and Engelhardt, J. K. (1982). Neuronal-like features of TE671 cells: presence of a functional nicotinic cholinergic receptor. Brain Res, 231, 365

    Article  PubMed  CAS  Google Scholar 

  • Trčka, V. (1980a). Relationship between chemical structure and ganglion-blocking activity. (a) Quaternary ammonium compounds. In Kharkevich, D. A. (Ed.), Pharmacology of Ganglionic Transmission, pp. 123–153. Springer-Verlag, Berlin, Heidelberg, New York

    Chapter  Google Scholar 

  • Trčka, V. (1980b). Relationship between chemical structure and ganglion-blocking activity. (b) Tertiary and secondary amines. In Kharkevich, D. A. (Ed.), Pharmacology of Ganglionic Transmission, pp. 155–184. Springer-Verlag, Berlin, Heidelberg, New York

    Chapter  Google Scholar 

  • Triggle, D. J. and Triggle, C. R. (1976). Chemical Pharmacology of the Synapse. Academic Press, London, New York, San Francisco

    Google Scholar 

  • Utkin, Yu. N., Pashkov, V. S., Pluzhnikov, K. A., Kuryatov, A. B., Arseniev, A. S., Tretlin, V. I., Bystrov, V. F. and Ivanov, V. T. (1983). Preparation and EPR studies of neuro-toxin. II. Naja naja oxiana spin labelled derivatives. Bioorg. Chem., 9, 437

    CAS  Google Scholar 

  • Van Rossum, J. M. (1962a). Classification and molecular pharmacology of ganglionic blocking agents. Part I. Mechanisms of ganglionic synaptic transmission and mode of action of ganglionic stimulants. Int. J. Neuropharmacol., 1, 97

    Article  CAS  Google Scholar 

  • Van Rossum, J. M. (1962b). Classification and molecular pharmacology of ganglionic blocking agents. Part II. Mode of action of competitive and non-competitive ganglion-blocking agents. Int. J. Neuropharmacol., 1, 403

    Article  Google Scholar 

  • Varanda, W., Aracava, Y. Sherby, S. M., Eldefrawi, M. E. and Albuquerque, E. X. (1984). Site of action of mecamylamine (MEC) on nicotinic acetylcholine receptor ion channel (AChR) complex of muscle and electroplax. Fed. Proc., 43, 342

    Google Scholar 

  • Volle, R. L. (1980). Ganglionic actions of anticholinesterase agents, catecholamines, neuro-muscular blocking agents, and local anaesthetics. In Kharkevich, D. A. (Ed.), Pharmacology of Ganglionic Transmission, pp. 385–410. Springer-Verlag, Berlin, Heidelberg, New York

    Chapter  Google Scholar 

  • Woodhull, A. M. (1973). Ionic blockade of sodium channels in nerve. J. Gen. Physiol, 61, 687

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 1986 The Editor and the Contributors

About this chapter

Cite this chapter

Skok, V.I. (1986). Ganglion Blockers. In: Woodruff, G.N. (eds) Mechanisms of Drug Action. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-08026-7_3

Download citation

Publish with us

Policies and ethics