Skip to main content

Colour Pathways and Hierarchies in the Cerebral Cortex

  • Chapter
Central and Peripheral Mechanisms of Colour Vision

Part of the book series: Wenner-Gren Center International Symposium Series ((WGS))

Abstract

My interest in colour vision is a direct consequence of my studies on the anatomical and functional organization of the prestriate cortex which, in the macaque monkey, is a large strip of cytoarchitectonically uniform cortex surrounding the striate cortex (V1). Long regarded as a single cortical field, it was commonly referred to as the “visuo-psychic” band or the “visual association” cortex with the implication that, unlike V1 or the “visuo-sensory” cortex (Campbell 1905), which was thought to be involved in visual sensation, the prestriate cortex was more involved in visual perception. The difficulty of demonstrating any clear and obvious visual defect after lesions of the prestriate visual cortex (see Zeki 1969 for a review), compared to the obvious scotomas which obtain after V1 lesions, served naturally to reinforce this view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen, V.O., Guld, C. and Sjö, O. (1983). Colour processing in prestriate cortex of vervet monkey. In: Mollon J.D., Taylor, S.K. (eds) Colour Vision. Academic Press, London.

    Google Scholar 

  • Baizer, J.S. (1982). Receptive field properties of V3 neurons in monkey. Invest. Opthal. 23, 87–95.

    CAS  Google Scholar 

  • Campbell, A.W. (1905). Histological studies on the localization of cerebral function. Cambridge University Press, Cambridge.

    Google Scholar 

  • Clare, M.H. and Bishop, C.H. (1954). Responses from an association area secondarily activated from optic cortex. J. Neurophysiol. 17, 271–277.

    PubMed  CAS  Google Scholar 

  • Cragg, B.G. (1969). The topography of the afferent projections in circumstriate visual cortex of the monkey studied by the Nauta method. Vision Res. 9, 733–747.

    Article  PubMed  CAS  Google Scholar 

  • Damassio, A., Yamada, T., Damasio, H. Corbett, J. and McKee, J. (1980). Central achromatopsia: Behavioural, anatomic and physiological aspects. Neurology 30, 1064–1071.

    Article  Google Scholar 

  • Daw, N.W. (1967). Neurophysiology of colour vision. Physiol. Rev. 53, 571–611.

    Google Scholar 

  • DeValois, R.L. (1972). Processing of intensity and wavelength information in the visual system. Invest. Opthal. 11, 417–427.

    CAS  Google Scholar 

  • Fisken, R.A., Garey, L.J. and Powell, T.P.S. (1975). The intrinsic assoication and commissural connections of area 17 of the visual cortex. Phil. Trans. R. Soc. Lond. B. 272, 487–536.

    Article  CAS  Google Scholar 

  • Fries, W. and Zeki, S.M. (1979). Effect of bilateral prestriate cortex (V4) lesions on wavelength discrimination in monkeys. Pflugers Arch 382, R. 46.

    Google Scholar 

  • Fries, W. and Zeki, S. (1983). The laminar origin of the cortical inputs to the fourth visual complex of the macaque monkey cortex. J. Physiol. Lond. 340, 51P.

    Article  Google Scholar 

  • Gattass, R. and Gross C.G. (1981). Visual topography of striate projection zone (MT) in posterior superior temporal sulcus of the macaque. J. Neurophysiol. 46, 621–638.

    PubMed  CAS  Google Scholar 

  • Hochberg, J.E. (1964). Perception. Prentice-Hall, Englewood Ciffs, New Jersey.

    Google Scholar 

  • Horn, B.K.P. (1974). Determining lightnesses from an image. Computer Graphics and Image Processing. 3, 277–299.

    Article  Google Scholar 

  • Horton, J.C. and Hubel, D.H. (1981). Regular patchy distribution of cytochrome oxidase staining in primary visual cortex of macaque monkey. Nature, London 292, 762–764.

    Article  CAS  Google Scholar 

  • Hubel, D.H. and Wiesel, T.N. (1965). Receptive fields and functional architecture in two non-striate visual areas (18 and 19) of the cat. J. Neurophysiol. 28, 229–289.

    PubMed  CAS  Google Scholar 

  • Hubel, D.H. and Wiesel, T.N. (1969). Visual area of the lateral suprasylvian gyrus (Clare-Bishop area) of the cat. J. Physiol. Lond. 202, 251–260.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hubel, D.H. and Wiesel, T.N. (1974). Sequence regularity and geometry of orientation columns in the monkey striate cortex. J. Comp. Neurol. 158, 267–294.

    Article  PubMed  CAS  Google Scholar 

  • Hubel, D.H. and Wiesel, T.N. (1977). Ferrier Lecture: Functional architecture of macaque monkey visual cortex. Proc. Roy. Soc. Lond. B, 198, 1–59.

    Article  CAS  Google Scholar 

  • Land, E.H. (1974). The retinex theory of colour vision. Proc. of the Royal Inst, of Gt. Britain, 47, 23.

    Google Scholar 

  • Land, E.H. (1983). Color vision and the natural image. III. Recent advances in retinex theory and some implications for cortical computations. Proc. Natl. Acad. Sci. USA. 80, 5163–5169.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Land, E.H., Hubel, D.H., Livingstone, M.S., Perry, S.H. and Burnes, M.M. (1983). Colour generating interactions across the corpus callosum. Nature Lond. 303, 616–618.

    Article  PubMed  CAS  Google Scholar 

  • Livingstone, M.S. and Hubel, D.H. (1982). Thalamic inputs to cytochrome oxidase-rich regions in monkey visual cortex. Proc. Natl. Acad. Sci. USA. 79, 6098–6101.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Livingstone, M.S. and Hubel, D.H. (1984). Anatomy and physiology of a color system in the primate visual cortex. J. Neurosci. 4, 309–356.

    PubMed  CAS  Google Scholar 

  • Lund, J.S., Lund, R.D., Hendrickson, A.E., Bunt, A.H. and Fuchs, A.F. (1975). The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horse radish peroxidase. J. Comp. Neurol. 164, 287–304.

    Article  PubMed  CAS  Google Scholar 

  • Michael, C.R. (1978). Color vision mechanisms in monkey striate cortex: dual opponent cells with concentric receptive fields. J. Neurophysiol. 41, 572–588.

    PubMed  CAS  Google Scholar 

  • Michael, C.R. (1981). Columnar organisation of colour cells in monkey striate cortex. J. Neurophysiol. 46, 587–604.

    PubMed  CAS  Google Scholar 

  • Meadows, J.C. (1974). Disturbed perception of colours associated with localised cerebral lesions. Brain, 97, 615–632.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, A.A. (1966). Chromatic adaptation in the macaque. J. Comp. Physiol. Psychol. 62, 76–83.

    Article  Google Scholar 

  • Otsuka, R. and Hassler, R. (1962). Über aufbau und fleiderung der corticalen sehsphäre bei der katze. Arch. Psychiat. Nervenkr. 203, 212–234.

    Article  PubMed  CAS  Google Scholar 

  • Pearlman, A., Birch, J. and Meadows, J.C. (1979). Cerebral color blindness: An acquired defect in hue discrimination. Ann. Neurol. 5, 253–261.

    Article  PubMed  CAS  Google Scholar 

  • Poggio, G.F., Baker, F.H. Mansfield, R.J.W., Sillito, A. and Grigg, P. (1975). Spatial and chromatic properties of neurons subserving foveal and parafoveal vision in rhesus monkey. Brain Res. 100, 25–59.

    Article  PubMed  CAS  Google Scholar 

  • Shipp, S. and Zeki, S. (1985). The segregation of pathways leading to V5 in macaque monkey visual cortex. Nature Lond. In press.

    Google Scholar 

  • Tanaka, M., Creutzfeldt, O. Werer, H. and Lee, B. (1984). Visual responses of single units in the prelunate gyrus of the awake monkey. Neuroscience Letters Supp. 18, 571.

    Google Scholar 

  • Ungerleider, L.G. and Mishkin, M. (1979). The striate projection zone in the superior temporal sulcus of Macaca mulatta: location and topographic organisation. J. Comp. Neurol. 188, 347–366.

    Article  PubMed  CAS  Google Scholar 

  • Van Essen, D.C., Maunsell, J.H.R. and Bixby, J.L. (1981). The middle temporal visual area in the macaque: myeloarchitecture, connections, functional properties and topographic organization. J. Comp. Neurol. 199, 293–326.

    Article  PubMed  Google Scholar 

  • Von Economo, C. and Koskinas, G.N. (1925). Cytoarchitecktonik der Grosshirninde des erwachsenen Menschen. Springer, Berlin.

    Google Scholar 

  • Whitteridge, D. (1965). Area 18 and the vertical meridian of vision. In: Ettlinger, E.G. (ed). Functions of the Corpus Callosum. Churchill, Lond.

    Google Scholar 

  • Wiesel, T.N. and Hubel, D.H. (1966). Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. J. Neurophysiol. 29, 1115–1156.

    PubMed  CAS  Google Scholar 

  • Wild, H., Butler, S.R., Carden, B. and Kulikowski, J.J. (1984). Primate cortical area V4 is important for colour constancy but not wavelength discrimination. Nature, Lond. In press.

    Google Scholar 

  • Wong-Riley, M.T.T. (1979). Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Res. 171, 11–28.

    Article  PubMed  CAS  Google Scholar 

  • Wright, M.J. (1969). Visual receptive fields of cells in a cortical area remote from the striate cortex of the cat. Nature, Lond. 223, 973–975.

    Article  CAS  Google Scholar 

  • Wurtz, R.H., Mikami, A., Newsome W.T. and Dursteier, M.R. (1984). In: Perspectives of Neuroscience: from molecule to mind. Y. Tsukada (ed), Tokyo, University Press.

    Google Scholar 

  • Zeki, S.M. (1969). The secondary visual areas of the monkey. Brain Res. 13, 197–226.

    Article  PubMed  CAS  Google Scholar 

  • Zeki, S.M. (1969). The representation of central visual fields in prestriate cortex of monkeys. Brain Res. 14, 271–291.

    Article  PubMed  CAS  Google Scholar 

  • Zeki, S.M. (1970). Interhemispheric connections of prestriate cortex of monkey. Brain Res. 19, 63–75.

    Article  PubMed  CAS  Google Scholar 

  • Zeki, S.M. (1971). Cortical projections from two prestriate areas in the monkey. Brain Res. 34, 19–35.

    Article  PubMed  CAS  Google Scholar 

  • Zeki, S.M. (1973). Colour coding in rhesus monkey prestriate cortex. Brain Res. 53, 422–427.

    Article  PubMed  CAS  Google Scholar 

  • Zeki, S.M. (1974). Functional organisation of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. J. Physiol. Lond. 236, 549–573.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zeki, S.M. (1975). The functional organisation of projections from striate to prestriate visual cortex in the rhesus monkey. Cold Spring Harbor Symp. Quant. Biol. 40, 591–600.

    Article  Google Scholar 

  • Zeki, S.M. (1976). The projections to the superior temporal sulcus from areas 17 and 18 in the rhesus monkey. Proc. Roy. Soc. Lond. B. 193, 199–207.

    Article  CAS  Google Scholar 

  • Zeki, S.M. (1977). Colour coding in the superior temporal sulcus of rhesus monkey visual cortex. Proc. Roy. Soc. Lond. B. 195, 517–523.

    Article  CAS  Google Scholar 

  • Zeki, S. (1978). Uniformity and diversity of structure and function in rhesus monkey prestriate visual cortex. J. Physiol. Lond. 277, 273–290.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zeki, S. (1978). Functional specialisation in the visual cortex of the rhesus monkey. Nature, Lond. 274, 423–428.

    Article  CAS  Google Scholar 

  • Zeki, S. (1978a). The third visual complex of rhesus monkey prestriate cortex. J. Physiol. Lond. 277, 245–272.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zeki, S. (1980). The representation of colours in the cerebral cortex of the monkey. Nature, Lond. 284, 412–418.

    Article  CAS  Google Scholar 

  • Zeki, S. (1980b). The consequence of varying background colours in stimulating cortical colour-coded cells. J. Physiol. Lond. P. 305, 71–72.

    Google Scholar 

  • Zeki, S. (1981). The mapping of visual functions in the cerebral cortex. Proceedings of the Third Tanaguchi Foundation Symposium. R. Norgren and M. Sato (eds). John Wiley and Sons, New York.

    Google Scholar 

  • Zeki, S. (1983). Does the colour of the after-image depend upon wavelength composition? J. Physiol. Lond. (P) 338, 36.

    Google Scholar 

  • Zeki, S. (1983a). Colour coding in the cerebral cortex: The reaction of cells in monkey visual cortex to wavelengths and colours. Neurosci. 9, No. 4, 741–765.

    Article  CAS  Google Scholar 

  • Zeki, S. (1983b). Colour coding in the cerebral cortex: The responses of wavelength-selective and colour-coded cells in monkey visual cortex to changes in wavelength composition. Neurosci. 9, No. 4, 767–781.

    Article  CAS  Google Scholar 

  • Zeki, S. (1983). The distribution of wavelength and orientation selective cells in different areas of monkey visual cortex. Proc. Roy. Soc. Lond. B. 217, 449–490.

    Article  CAS  Google Scholar 

  • Zeki, S. and Shipp, S. (1985). Visual physiology and colour theory. Nature, Lond. (In press).

    Google Scholar 

  • Zihl, J., Von Cramon, D, and Mai, N. (1983). Selective disturbance of movement vision after bialateral brain damage. Brain 106, 313–340.

    Article  PubMed  Google Scholar 

  • Zrenner, E. (1983). Neurophysiological aspects of colour vision in primates. Springer, Berlin.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 1985 The Wenner-Gren Center

About this chapter

Cite this chapter

Zeki, S. (1985). Colour Pathways and Hierarchies in the Cerebral Cortex. In: Ottoson, D., Zeki, S. (eds) Central and Peripheral Mechanisms of Colour Vision. Wenner-Gren Center International Symposium Series. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-08020-5_3

Download citation

Publish with us

Policies and ethics