Skip to main content

Biochemical and Behavioural Studies of Melatonin

  • Chapter
Circadian Rhythms in the Central Nervous System

Abstract

Rhythmic variations occur in the biological activity of all species from simple organisms to man. The period length of these rhythms varies. Some are related to environmental cues such as the light-dark phase of the 24 hour day or the monthly or seasonal cycles. These rhythms are known as exogenous rhythms. However, where the rhythmic activity continues in the absence of an environmental synthroniser, it is usually known as an endogenous cycle such as temperature or urinary potassium output.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Arendt, J., (1981). Assay of melatonin and other 5-methoxyindoles; current status and usefulness in physiological and clinical investigations. In The Pineal Organ: Photobiology-Biochemistry-Endocrinology., (eds. A. Oksche and P. Pevet), Elsevier, Amsterdam.

    Google Scholar 

  • Arendt, J., (1983). Biological rhythms., Intern. Medicine., 3, 6–9.

    Google Scholar 

  • Arendt, J., Symons, A.M., Laud, C.A. and Pryde, S.J., (1983). Melatonin can induce early onset of the breeding season in ewes. J. Endocrinol., 97, 395–400.

    Article  CAS  PubMed  Google Scholar 

  • Axelrod, J. and Weissbach, H., (1960). Enzymatic O-methylation of N-acetylserotonin to melatonin. Science., 131, 1312.

    Article  CAS  PubMed  Google Scholar 

  • Axelrod, J. and Weissbach, H., (1960). Enzymatic O-methylation of N-acetylserotonin to melatonin. Science., 131, 1312. Beck, O. and Jonsson, G., (1981). In vivo formation of 5-methoxytryptamine from melatonin in rat. J. Neurochem., 36, 2013–2018.

    Article  CAS  PubMed  Google Scholar 

  • Bittman, E.C., Dempsey, J. and Karsch, F.J., (1983). Pineal melatonin secretion drives the reproductive response to daylength in the ewe. Endocrinology., 113, 2276–2283.

    Article  CAS  PubMed  Google Scholar 

  • Bradbury, A.J., Kelly, M.E. and Smith, J.A., (1984). Melatonin action in the midbrain can regulate forebrain dopamine function both behaviourally and biochemically. Abstract., Pineal 84 Satellite Symposium., 7th International Congress of Endocrinology, Canada.

    Google Scholar 

  • Bubenik, G.A., Purtill, R.A., Brown, G.M. and Grota, L.J., (1978). Melatonin in the retina and harderian gland. Ontogeny, diurnal variations and melatonin treatment. Exp. Eye., Res., 27, 323–333.

    CAS  Google Scholar 

  • Cardinali, D.P., Vacas, M.I. and Boyer, E.E., (1979). Specific binding of melatonin in bovine brain. Endocrinology., 105, 437–441.

    Article  CAS  PubMed  Google Scholar 

  • Carter, S.J., Laud, C.A., Smith, I., Leone, R.M., Silman, R.E., Hooper, R.J.L., Larson-Carter, D.L., Finnie, M.D.A. and Mullen, P.E., (1979). 5-methoxytryptophol in rat pineal glands and other tissues. In The pineal of vertebrates including man, (eds. J.A. Kappers and P. Pevet), Prog. Brain Res., 52, Elsevier, Amsterdam.

    Google Scholar 

  • Dubocovich, M.L., (1983). Melatonin is a potent modulator of dopamine release in the retina. Nature., 306, 782–784.

    Article  CAS  PubMed  Google Scholar 

  • Falck, B., Owman, C. and Rosengren, E., (1966). Changes in rat pineal stores of 5-hydroxytryptamine after inhibition of its synthesis or breakdown. Acta. Physiol., Scand., 67, 300–305.

    Article  CAS  Google Scholar 

  • Fellenberg, A.J., Phillipou, G. and Seamark, R.F., (1981). Urinary 6-Sulphatoxy melatonin excretion and melatonin production rate: Studies in sheep and man. In Pineal Function, (eds. CD. Matthews and R.F. Seamark)., Elsevier, Amsterdam.

    Google Scholar 

  • Frohn, N.A., Seaborn, C.J., Johnson, D.W., Phillipou, G., Seamark, R.F. and Matthews, CD., (1980). Structure activity relationship of melatonin analogues. Life Sci., 27, 2043–46.

    Article  CAS  PubMed  Google Scholar 

  • Gibbs, F.P. and Vriend, J., (1981). The half life of melatonin elimination from rat plasma. Endocrinology., 109, 1796–1798.

    Article  CAS  PubMed  Google Scholar 

  • Hirata, F., Hayaishi, O., Fokuyama, T. and Senoh, S., (1974). In vitro and in vivo formation of two metabolites of melatonin. J. Biol. Chem., 249, 1311–13.

    CAS  PubMed  Google Scholar 

  • Ho, A.K. and Smith, J.A. (1982). Effect of Benserazide on the levels of pineal 5-hydroxytryptamine, melatonin synthesising enzymes and serum melatonin. Biochem.Pharmac., 31, 2251–2255.

    Article  CAS  Google Scholar 

  • Ho, A.K. and Smith, J.A. (1983). Differential effect of benserazide on catecholamine concentrations in the rat pineal, cerebral cortex and hypothalamus. Biochem.Pharmac., 32, 3605–3609.

    Article  CAS  Google Scholar 

  • Holmes, S.W. and Sugden, D., (1982). Effects of melatonin on sleep and neurochemistry in the rat. Br. J. Pharmac., 76, 98–101.

    Article  Google Scholar 

  • Hooper, R.J.L., Silman, R.E., Leone, R.M. and Young, I., (1981). The development of a plasma assay for 5-methoxytryptamine using gas chromatography-mass spectrometry. In Pineal Function, (eds. CD. Matthews and R.F. Seamark)., Elsevier, Amsterdam.

    Google Scholar 

  • Illnerova, H., Vanecek, J. and Hoffmann, K., (1983). Regulation of the pineal melatonin concentration in the rat (rattus norvegicus) and in the Djungarian Hamster (phodopus sungorus). Comp. Biochem. Physiol., 74A, 155–159.

    Article  CAS  Google Scholar 

  • Jung, M.J., Palfreyman, M.G., Wagner, J., Bey, P., Ribereau-Gayon, G., Zraika, M. and Koch-Weser, J., (1979). Inhibition of monoamine synthesis by irreversible blockage of aromatic acid decarboxylase with a-mono-fluoromethyldopa. Life Sci., 24, 1031–1042.

    Article  Google Scholar 

  • Klein, D.C. and Weiler, J., (1973). Adrenergic-adenosine 3′,5′-monophosphate regulation of serotonin N-acetyl-transferase activity and the temporal relationship of serotonin N-acetyl-transferase activity to the synthesis of 3H-N-acetylserotonin and 3H-melatonin in the cultured rat pineal gland. J. Pharm. Exp.Ther., 186, 516–527.

    CAS  Google Scholar 

  • Klein, D.C., (1979). Circadian rhythms in the pineal gland. In Endocrine Rhythms, (ed. D.T. Kreiger)., Raven Press, New York.

    Google Scholar 

  • Knigge, K.M. and Sheridan, M.N., (1976). Pineal function in hamsters bearing melatonin antibodies. Life Sci., 19, 1235–380.

    Article  CAS  PubMed  Google Scholar 

  • Moore, R.Y. and Klein, D.C, (1974). Visual pathways and the central neural control of a circadian rhythm in pineal serotonin N-acetyltransferase. Brain Res., 71, 17–33.

    Article  CAS  PubMed  Google Scholar 

  • Niles, P.L., Wong, Y.W., Mishra, R.K. and Brown, G.M., (1979). Melatonin receptors in brain. European J. Pharmac., 55, 219–20.

    Article  CAS  Google Scholar 

  • Pardridge, W.M. and Meitus, L.J., (1980). Transport of albumin-bound melatonin through the blood brain barrier. J. Neurochem., 34, 1761–63.

    Article  CAS  PubMed  Google Scholar 

  • Pevet, P. (1983). The 5-methoxyindoles different from melatonin: their effects on the sexual axis. In The pineal gland and its endocrine role.(eds. J. Axelrod, F. Fraschini and G.P. Velo). Life Sciences., 65, Plenum Press, New York.

    Google Scholar 

  • Pevet, P., Balemans, M.G.M., Legerstee, W.C and Vivien-Roels, B., (1980). Circadian rhythmicity of the activity of hydroxyindole-O-methyl transferase (HIOMT) in the formation of melatonin on a 5-methoxytryptophol in the pineal, retina and Harderian gland of the golden hamster. J. Neural. Transm., 19, 229–45.

    Article  Google Scholar 

  • Raikhlin, N.T., Kvetnoy, I.M. and Tolkachev., (1975). Melatonin may be synthesised in enterochromaffin cells. Nature., 255, 344–345.

    Article  CAS  PubMed  Google Scholar 

  • Reiter, R.J., (1980). The pineal and its hormones in the control of reproduction in mammals. Endocrinology Revs., 1, 109–131.

    Article  CAS  Google Scholar 

  • Reppert, S.M., Perlow, M.J., Tamarkin, L. and Klein, D.C., (1979). A diurnal melatonin rhythm in primate cerebrospinal fluid. Endocrinology., 104, 295–301.

    Article  CAS  PubMed  Google Scholar 

  • Rollag, M.D., Morgan, R.J. and Niswender, G.D., (1978). Route of melatonin secretion in sheep. Endocrinology., 102, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Shein, H.M. and Wurtman, R.J., (1971). Stimulation of (14C) tryptophan 5-hydroxylation by norepinephrine and dibutyl adenosine 3′,5′-monophosphate in rat pineal organ cultures. Life Sci., 10, 935–40.

    Article  CAS  Google Scholar 

  • Smith, J.A., (1980a). The Biochemistry and Pharmacology of Melatonin. In Adv. Biosci. 29. Melatonin:current status and perspectives, (eds. N. Birau and W. Schloot)., Pergamon Press, Oxford.

    Google Scholar 

  • Smith, J.A., (1980b). The Pharmacology of Melatonin. In Adv. Biosci. 29. Melatonin:current status and perspectives, (eds. N. Birau and W. Schloot)., Pergamon Press, Oxford.

    Google Scholar 

  • Sugden, D., (1983). Psychopharmacological effects of melatonin in mouse and rat. J. Pharm. Exp. Therap., 227, 587–91.

    CAS  Google Scholar 

  • Tan, C.H. and Khoo, J.C.M., (1981). Melatonin concentrations in human serum, ventricular and lumbar cerebrospinal fluids as an index of the secretory pathway of the pineal gland. Hormone Res., 14, 244–53.

    Article  Google Scholar 

  • Tetsuo, M., Perlow, M.J., Mishkin, N. and Markey, P., (1982). Light exposure reduces and pinealectomy virtually stops urinary excretion of 6-hydroxymelatonin by rhesus monkey. Endocrinology., 110, 997–1003.

    Article  CAS  PubMed  Google Scholar 

  • Trentini, G.P., Mess, B., de Gaetani, C.F. and Ruzsas, C., (1979). Pineal-brain relationship. Prog. Brain. Res., 52, 341–44.

    Article  CAS  PubMed  Google Scholar 

  • Vollrath, L., Semm, P. and Gammel, G., (1981). Sleep induction by intranasal application of melatonin. Adv. Biosci., 29, 327–329.

    Google Scholar 

  • Weissbach, H., Redfield, B.G. and Axelrod, J., (1960). Biosynthesis of melatonin:enzymatic conversion of serotonin to N-acetylserotonin. Biochim. Biophys. Acta., 43, 352–353.

    Article  CAS  PubMed  Google Scholar 

  • Wendel, O.T., Waterbury, L.D. and Pearce, L.A., (1974). Increase in monoamine concentrations in rat brain following melatonin administration. Experimentia., 30, 1167–1168.

    Article  CAS  Google Scholar 

  • Withachumnarnkul, B. and Knigge, K.M., (1980). Melatonin concentration in cerebrospinal fluid, peripheral plasma and plasma of the confluens sinum of the rat. Neuroendocrinology., 30, 382–6.

    Article  Google Scholar 

  • Wurtman, R.J. and Moskowitz, M.A., (1977). The pineal organ (First of two parts). Medical Progress., 296, 1329–1383.

    CAS  Google Scholar 

  • Zisapel, N. and Laudon, M., (1983). Inhibition by melatonin of dopamine release from rat hypothalamus : regulation of calcium entry. Brain Res., 272, 378–381.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1985 The Contributors

About this chapter

Cite this chapter

Smith, J.A. (1985). Biochemical and Behavioural Studies of Melatonin. In: Redfern, P.H., Campbell, I.C., Davies, J.A., Martin, K.F. (eds) Circadian Rhythms in the Central Nervous System. Satellite Symposia of the IUPHAR 9th International Congress of Pharmacology. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-07837-0_1

Download citation

Publish with us

Policies and ethics